
Prepared by: Mujtaba Alshakhouri
Supervised by: Prof. Tim Bell 2011

Activity Name:
The Magic Robot: Introducing Error Control
Concept with Robots

Student Level: Year 12

Satisfied Achievement
Standards:

2.44 (Error Control Coding), 2.45 (Most of), 2.46
(Most of). Details inside.

Apparatus:

12Blocks programming environment, a TBot robot,
black & white adhesive squares (sticky notes or
fridge magnetic cards would be fine)

2 | P a g e

Contents

Summary: .. 3

I. Motivation: ... 3

II. Mind storming with students .. 4

III. Activity Description ... 5

IV. List of Areas of Achievement Standards Covered ... 5

V. About 12Blocks Language ... 6

VI. About the TBot: ... 6

VII. Warming UP .. 7

VIII. Writing the Program (With Details of the Standards mappings): ... 9

Phase 1: Moving the TBot across the squares: ... 9

Phase 2: Storing and using the data to do the magic work: ... 14

The Main Program Module: .. 21

IX. Notes ... 23

X. Acknowledgment .. 24

XI. Complete Code in a Picture .. 25

3 | P a g e

Summary:
By completing this activity, students should gain the knowledge and understanding of

computer science concepts and programming experience required by the New Zealand

Digital Technologies Achievement Standards of 2.45, 2.46, and parts of 2.44. It aims to

deliver this knowledge to students through an engaging and entertaining experience.

This activity is ōŀǎƛŎŀƭƭȅ ŀƴƻǘƘŜǊ ǾŜǊǎƛƻƴ ƻŦ ǘƘŜ ǇƻǇǳƭŀǊ ŀŎǘƛǾƛǘȅ Ψ/ŀǊŘ CƭƛǇ aŀƎƛŎΩ ŘŜǾŜƭƻǇŜŘ

by Tim Bell and featured on csunplugged website. The interesting difference here is that we

are going to have a robot performing the role of the magician. After randomly arranging the

squares into a 6 by 6 matrix-like block, students would flip a particular square/card from

their own choice. The robot then will walk over each square and find out the particular card

that was flipped.

This activity guide assumes minimal prior knowledge of programming; hence it should be

accessible to a wider range of teachers and used confidently to run this activity in their

classes.

I. Motivation :

Teachers may preferably start this activity with their students by watching the video

demonstration of the άCard Flip Magicέ game that is featured on csunplugged.org. A good

next step then would be to watch a video of this activity, which is essentially the same game

except that the magician role is played by ŀ ǊƻōƻǘΦ ¢ƘŜ ƎŀƳŜ ƛǎ ŜȄǇŜŎǘŜŘ ǘƻ ŀǊƻǳǎŜ ǎǘǳŘŜƴǘǎΩ

curiosity in the science behind this trick, motivating them with the desire to learn more

about the concept behind it. This game will let them experience a real world and hands-on

example for how computers are able to perform intelligent tasks.

Teachers at this point are expected to engage in a motivating and inspiring discussion with

their students and ultimately unfolding the concept of error detection and correction in

computer science.

A raw and premature demonstration video of this activity can be watched on YouTube here:

http://www.youtube.com/watch?v=ivMt745iMJw [1]

[1]: a brief discussion of this video can be found at the end of this document.

http://www.youtube.com/watch?v=ivMt745iMJw

4 | P a g e

II . Mind storming with students

After the students have been introduced to the concept of error control in computer

science, teachers should now try to get into a discussion with them on what they think it

would take to replicate the above robot game.

Students are expected to ultimately reach the consensus that they will need to solve two

main distinct problems to recreate that activity. The first is to get the robot to walk over the

whole matrix of squares (or blocks) passing over each individual square in order to read it.

The second problem is to collect the data (whites/blacks) in a proper way in order to

interpret them at the end to find out the solution (the flipped card).

There are obviously different approaches to handle each of those two problems; some will

be easier than the rest. For example, to have the robot read all the squares, we could make

it go over each row and then each column such that once it reaches the end of a column or

row, it manoeuvres and turns back to start reading the next one. An easier approach though

(and the one we chose and that appears in the demonstration video) would be to make it

simply go over each row and once it reaches the end of a row, it just moves backward and

manoeuvres slightly to prepare to go over the next row. Moving over each column would be

redundant. While we do this when solving the game in our head, computers would not need

this step since the data is already there; they only need to extrapolate it. (This in fact would

be a good point to engage with students into a discussion on how computers can be more

efficient than our brains at solving some spectrum of tasks). Yet another approach might be

having the robot following a line beside each row such that it passes over the squares at the

same time.

Similarly, the way the data is stored and interpreted can be achieved in different ways. An

easy initial approach might simply be to use a separate array for each row of squares. This

will probably make it easier for the students. Teachers might however want to have their

students use a single two dimensional array for extra educational benefit. Unfortunately,

12Blocks currently does not support two dimensional arrays, but hopefully it will do in a

future version.

Teachers do not have to adopt the same approaches that we have adopted here. After going

through this guide and seeing how our approach was implemented, it should be fairly easy

to adapt this guide to a different approach of, for instance, moving the robot. Whatever

approach is adopted, teachers need to take into account the fact that the robot will be very

sensitive to the surface type and even the slightest bump would affect its accuracy in

moving on the intended path. This was the reason why we preferred to simply stick white

paper squares on top of a black surface to reduce bumps and friction as much as possible.

The kind of surface that the sheet is placed on would also dramatically affect both the speed

and ŀŎŎǳǊŀŎȅ ƻŦ ǘƘŜ ǊƻōƻǘΩǎ ƳƻǾŜƳŜƴǘǎ.

5 | P a g e

III . Activity Description

In this activity students will be using the 12Blocks programming language to write the

program that makes the robot do the magic work. While at first instant it may look to be a

complicated work, 12Blocks in fact makes it quite simple and easy to control the TBot robot.

Robots are always an exciting thing for kids to work with and the students will in fact be

absolutely fascinated and hooked up when they see how easy it is to control the TBot with

the 12Blocks language. Movements, sounds, lights, and sensor reading can all be done with

basically a drag and drop of a single block of code.

This activity will be implemented in two phases. In the first phase, students will need to

build the code that gets the robot moving across all the squares to read them. The other

phase will be to write the code to interpret the collected data and do the necessary

algorithmic work to find out the solution, i.e. the flipped card or the parity bit.

The first phase will involve a considerable time of trails and errors to get the robot to move

precisely as required. This however will greatly depend on the approach chosen to

implement this phase. In fact, 12Blocks should be updated soon to include a readily

implemented code block for following a line (see note [2] at the end of this document). So once

it is available, this block can make the implementation of this phase extremely easy.

IV. List of Areas of Achievement Standards Covered

The activity will (or can) cover the following areas of the achievement standards (2.44, 2.45,

and 2.46) as shown in detail below:

Area Covered Standard Notes

Understanding of error control coding 2.44 Achievement

Discussing how a widely used technology is enabled by
error control coding

2.44
Achievement with Merit

Selecting & using appropriate data types 2.45 Achievement

Specifying variables for holding information 2.45 Achievement

Accessing & using data in indexed sequential data
structures (arrays)

2.45 & 2.46
 Achievement

Constructing a modular algorithmic structure where at
least the top level module contains calls to other
modules

2.45
A/M/E

A modular algorithmic structure where modules
constitutes a well structured logical decomposition of a

2.45 Achievement with
Excellence

6 | P a g e

task

A task sufficiently rich to allow the student to meet the
standard

2.46
A/M/E

Usage of expressions, iteration and selection control
structures

2.46
A/M/E

Construction & calling of multiple programmer defined
functions

2.46
A/M/E

Documenting the program (optional) 2.46 Achievement with Merit

Obtaining & using input data from external source 2.46 A/M/E

Testing the program with sample expected inputs 2.45 & 2.46 Achievement

Comprehensive testing of a program 2.46 Achievement with
Excellence

Writing a well structured, maintainable, commented
program with explanatory variable names and named
modules/functions

2.46
Achievement with
Excellence

Note: A/M/E stands for requirement by all three achievement levels.

V. About the 12Blocks Language

12Blocks is a visual and easy to use drop-and-drag programming language that is highly

suitable for educational purposes, especially at introductory levels. It is mainly targeted at

programming robots and microcontrollers and supports various types of devices. The best

way to have a quick overview of this language is to visit its official website at:

http://12blocks.com. The features page (http://12blocks.com/features.php) is a good place to get

started. Tutorials and sample programs can also be found on the main site.

VI. About the TBot :

The TBot is a multipurpose educational robot that was designed to make learning both fun

and exciting. It is suitable for a wide range of experiments and activities right from

kindergartens up to university students. It has many features like motors control, full-colour

LED lights, powerful sensors, encoders, sound playing, synthesizing, recording, plus many

other features. Most interesting is that it can be programmed with the simple drag and drop

12Blocks language making it accessible to a wider range of users. For more details and a full

list of features please visit: http://onerobot.org/overview.pdf. For orders and enquiries

please visit the main official site at: http://onerobot.org

http://12blocks.com/
http://12blocks.com/features.php
http://onerobot.org/overview.pdf
http://onerobot.org/

7 | P a g e

VII . Warming UP

Before students are asked to embark on writing the program, they should preferably spend

some time getting familiar with the capabilities of the TBot and the 12Blocks programming

language.

For example, students can initially start to try to move the robot in a straight line, forward

and backward. Then, they try getting it to move in a certain path with turns and curves.

 Getting the TBot to Move:

With 12Blocks, getting the TBot to move forward is as simple as this:

The picture below shows how to get it to move forward for half a second then turn right for

0.2 seconds, and then move backward:

As you may have guessed it, a minus sign is used to move backward. A minus sign is also

used to turn left. The input cells accept time in milliseconds.

 Exploring Colours with LED light

The TBot has a full-colour LED light that can be easily controlled to produce various kinds of

colours and hues. The picture below shows an example of how it can be easily done in

12Blocks:

8 | P a g e

The first input cell ƛƴ ǘƘŜ Ψset LEDΩ ŎƻŘŜ ōƭƻŎƪ is used to select the colour name while the

two other cells are used to control saturation and luminosity, respectively. A wait block is

used to keep the LED emitting light for one second.

 Getting the TBot to Speak:

12Blocks has various blocks to play sounds in different ways. The TBot has a built-in speaker

and with 12Blocks, students can easily play wav files, sound effect files, as well as

synthesized song files. They can also use the built-in microphone to implement sound

controlled tasks. Other capabilities also exist like producing tones of chosen frequencies.

For example, the following program ǿƛƭƭ ƳŀƪŜ ǘƘŜ ¢.ƻǘ ǎǇŜŀƪ ƻǳǘ ǘƘŜ ǎŜƴǘŜƴŎŜ άƘŜƭƭƻ L ŀƳ ŀ

Ǌƻōƻǘέ ŀƴŘ ǘƘŜƴ ƎŜƴŜǊŀǘŜ ŀƴŘ Ǉƭŀȅ ŀ ǘƻƴŜ ƻŦ нллл IȊ ŦƻǊ ƘŀƭŦ ŀ ǎecond:

Students should now be encouraged to go through some of the other code blocks and

explore for themselves what they can do with the TBot. They should for example try using

some loops, conditional blocks, assigning data to variables, printing numbers and texts to

the screen, and reading user input. Tutorials and samples can be found on 12Blocks official

site: http://12blocks.com.

12blocks is fairly a simple and straight forward language and very readable as well.

Therefore, it would be more educationally rewarding for students if they were allowed to

plunge into it without prior demonstrations. Guidance and help should be provided

minimally and only when truly required. Care should be taken not to spoil the moment for

the student and let them enjoy the bliss and elation of solving a problem themselves. At the

same time, it is also important not to allow them to get desperate.

http://12blocks.com/

9 | P a g e

VIII . Writin g the Program (With Details of the Standards mapping s):

As mentioned earlier, this activity will be implemented in two phases. We will discuss each

phase with some detail here. We will build our program with a 6 by 6 matrix of squares in

mind. So, as per the game rules (explained on csunplugged), the initial matrix would be only

5 by 5. The 6th row and column would be added at the end by the game coordinator to

control the parity bits.

Phase 1: Moving the TBot across the squares:

The example code blocks above showed us how easy it was to build a program in 12Blocks.

In the above simple examples, we simply attached the desired block of code to the ΨStartΩ

code block to make the program run directly once it is uploaded to the TBot (achieved by

clicking the Run menu command). In our case here however, we are developing a relatively

more complex program and hence we need to build it in a more professional approach.

We will be using functions (methods) to implement each distinct part of our program.

The functions tab of the 12Blocks programming environment has a block that can be used to

define a new function. The picture below shows how it looks like. To define a new function

simply drag the top angled block and rename the function with the desired name.

Parameters can be declared inside the brackets, separated by commas (without space) if

more than one is used.

Since we are building a function for moving the robot forward, we will not need any

parameter. We can simply define our function as follows:

After defining the new function, it will appear in the functions section of the library similar

to this:

10 | P a g e

V Step 1: Moving Forward

By now students are expected to have experimented enough with moving the TBot. So an

initial trial to get the robot to move over six blocks might look something similar to the

following:

Explanation: A ΨrepeatΩ loop block was used to have the TBot move six times for 217

milliseconds, stopping for a second between each. The number 217 was in our case

determined by trial and error and students are expected to do the same to find out how

much it would take the TBot to move over each single square. Obviously, this would vary

according to the size of the squares or blocks used. The type of the surface of any sheet

used and the type of surface that the sheet (if any) is placed on, will also significantly affect

this. The speed of the TBot can also be controlled with the ΨǎŜǘ ŎǊǳƛǎŜ ǎǇŜŜŘΩ code block

found in the motion section of the library.

! ŎƻŘŜ ōƭƻŎƪ ǘƘŀǘ ǿƛƭƭ Ǉƭŀȅ ŀ ΨōŜŜǇΩ ǘƻƴŜ ŀŦǘŜǊ ǎǘƻǇǇƛƴƎ ŀǘ ŜŀŎƘ ǎǉǳŀǊŜ ƛǎ ŀŘŘŜŘ ǘƻ ƎƛǾŜ ǘƘŜ

program a nice effect of scan-like action. The TBot will actually read off the square colour at

that point using its sensors, but that will be implemented later on.

A.S. Relevance[1]:
Construction of named modules (2.45 A/M/E), construction of programmer
defined functions/methods (2.46 A/M/E), Usage of iteration control
structures (2.46 A/M/E)

[1]: The abbreviation A.S. is used to refer to the term Achievement Standard.

11 | P a g e

To test the code above, students can build a simple testing program similar to this:

The ΨbuttonΩ code block allows the user to chose from a drop menu which button (TBot has

three buttons) to use and to also choose the state of the button (down, up, pressed,

released) for when the action should be triggered. The button block is docked to a ΨwhenΩ

block to let the program runs when the certain button is pressed and released.

A.S. Relevance: Testing and debugging a program (2.45 & 2.46 Achievement)

V Step 2: /ƻǊǊŜŎǘƛƴƎ ǘƘŜ ¢.ƻǘΩǎ {ƪŜǿing

Students might find that the TBot skews to one direction instead of moving in a straight line.

This can happen either due to the surface or due to internal mechanics of the TBot. In case

corrections were needed then students can apply them by modifying the code to something

similar to this:

The trick is to experiment with how much we need to turn the TBot in the opposite direction

to correct for the skewing. Students can then add this correction as needed. In our case

above, we needed to add the correction after the TBot moves across 3 squares so we simply

split up our loop into two and added the correction in between.

12 | P a g e

Note: The TBot unit that we have experimented with was a handmade prototype and had

a tendency to skew left when moving forward. All new TBots will be machine built though

and will be more precise and accurate; so students might not need to add any correction

code. The new TBots will also have encoders for the wheels which should make any needed

correction much easier to implement.

V Step 3: Moving Backward

Now that we have moved the TBot forward across a row of six squares, we need to bring it

backward in order to manoeuvre it to start moving across the next row of squares. As we

have discussed earlier, students can adopt a different approach of how to continue at this

point. The programming needed should not be much different though than the one we will

discuss here.

An easy way to implement this would be to record how much the robot has moved forward

and then letting it move that much backward. We use a variable to hold this information

and increment it continuously as the TBot moves forward. The picture below shows how to

add this to our earlier code:

A.S. Relevance:
Specifying variables for holding information (2.45 Achievement),
Selecting & using appropriate data types (2.45 Achievement)

 Tip: 12Blocks has one type for numbers which is simply called ΨnumberΩ ŀƴŘ ƻƴŜ

ǘȅǇŜ ŦƻǊ ǎǘǊƛƴƎǎ ŎŀƭƭŜŘ ΨTextΩΦ A ǘȅǇŜ ƻŦ ΨValueΩ ǿƻǳƭŘ ŀŎŎŜǇǘ ŜƛǘƘŜǊ ǘŜȄǘ ƻǊ ƴǳƳōŜǊΦ

¢ƘŜ ΨsetΩ ŎƻŘŜ ōƭƻŎƪ όǎƘƻǿƴ ōŜƭƻǿύΣ ŦƻǊ ŜȄŀƳǇƭŜΣ ŀŎŎŜǇǘǎ ōƻǘƘ ǘŜȄǘǎ ŀƴŘ ƴǳƳōŜǊǎΦ

13 | P a g e

We then define another function for handling the backward movements and which will

make use of the data held in the variable x. This can be achieved simply as follows:

V Step 4: Manoeuvring

Once the TBot is back in its original position, we simply now need to do slight manoeuvring

to make it align itself with the next row of squares. This will require some experimenting

with trial and error until the correct figures for how much to move and turn is determined.

The below picture shows what students might reach at:

Note: the backward movement code has now been combined with the manoeuvring

code and ǘƘŜ ŦǳƴŎǘƛƻƴ ǿŀǎ ǊŜƴŀƳŜŘ ǘƻ ǎƛƳǇƭȅ ΨmanoeuvreΩ.

A.S. Relevance:

Construction of multiple programmer defined functions (2.46 A/M/E),
A modular algorithmic structure where modules constitutes a well
structured logical decomposition of a task (2.45 Achievement with
Excellence)

14 | P a g e

Phase 2: Storing and using the data to do the magic work :

Now that the robot is able to go over each one of the squares, the next step is to build the

code that will make the robot read off the colour every time it stops at each square block.

The TBot has five infrared sensors in its underside facing downward. Since different colours

would reflect back different amount of radiation back, we can use those sensors to find out

the colour the robot is looking at.

12Blocks has a code block that could be used to easily read off sensor data. Students should

be able to quickly find out the code block that should be used for this task. In the tbot

ǎŜŎǘƛƻƴ ƻŦ ǘƘŜ ƭƛōǊŀǊȅΣ ǘƘŜǊŜ ƛǎ ŀ ŎƻŘŜ ōƭƻŎƪ ƴŀƳŜŘ Ψread line sensorΩ όǎŜŜ ōŜƭƻǿύ ǿƘƛŎƘ Ŏŀƴ

be used for this purpose:

Tip: The Ψread line sensorΩ code block has two drop-down menus (the second shows

ΨǾŀƭǳŜΩ ŀƭǊŜŀŘȅ ǎŜƭŜŎǘŜŘύΤ ƻƴŜ ŦƻǊ ǎŜƭŜŎǘƛƴƎ ǘƘŜ specific sensor to be used and the other

for selecting the type of reading desired (maximum, minimum, rate, & value).

A quick test for reading sensor data could be achieved like this:

¢ŜŀŎƘŜǊΩǎ ¢ƛǇΥ Students should be encouraged to work out for themselves how this

code block could be used to identify white colour from black. It is a well known fact

that more educational value is gained when students discover knowledge by themselves

rather than when it is disclosed readily to them. With a quick test like the above, students

will notice that white colour gives readings that are always above the figure 100,000. Black

colour readings, on the other hand, will always be much lower. Hence, with a simple

15 | P a g e

comparison, we can easily consider any reading lower than 100,000 to be black colour and

anything higher to be white.

Note: The sensor readings will differ depending on the type of surface and how

shiny it is, ŀǎ ǿŜƭƭ ŀǎ ǘƻ ǘƘŜ ǊƻƻƳΩǎ ƭƛƎƘǘƛƴƎΦ .ǳǘ ǘƘŜ ƪŜȅ ƛŘŜŀ ǿƛƭƭ ǎǘƛƭƭ ōŜ ǘƘŜ ǎŀƳŜ

which is that there will be large difference between white and black colour readings that can

be used to differentiate between them easily. Using the robot in sun light might not

probably work correctly as there will be too much infrared noise.

At this point, after students are comfortable with how to read sensor data, they should try

to add this capability to the previous code for moving the robot such that the robot reads

and stores this data as it stops at each of the squares. The following describes how this can

be achieved.

V Step 1: Reading Off Colour Data

To make our program more organized and maintainable, we should create a user defined

function that will specifically handle the sensor readings, rather than adding this directly to

our previous code that handles the robot movements. The below picture shows a function

ƴŀƳŜŘ ΨreadColourΩ ǘƘŀǘ was built to read off sensor data and store them in a single array

ƴŀƳŜ ΨŘŀǘŀ!ǊǊŀȅΩ:

Explanation: the variable s is used to store the value of the reading. An if-statement

is then used to compare that variable against the number 100,000 and store either a 0

or 1 in a specified array ƴŀƳŜŘ ΨdataArrayΩΦ A parameter named ΨƛƴŘŜȄΩ ƛǎ ǳǎŜŘ ǘƻ ŀƭƭƻǿ ǘƘŜ

caller to provide the appropriate index when calling the function. мн.ƭƻŎƪǎ ǇǊƻǾƛŘŜǎ ŀ ΨsetΩ

code block (found in vars section of the library) that can be used to store data in an array.

The picture below shows its details:

16 | P a g e

A.S. Relevance: Obtaining & using input data from external source (2.46 A/M/E)

The ΨreadColourΩ function can then be nicely called from the module program that handles

ǘƘŜ ǊƻōƻǘΩǎ ƳƻǾŜƳŜƴǘ. The picture below shows this:

Note: ŀ ΨsetΩ ŎƻŘŜ ōƭƻŎƪ ƛǎ ǳǎŜŘ ǘƻ ǎŜǘ ǘƘŜ ΨŀǊǊŀȅLƴŘŜȄΩ ǾŀƭǳŜ ǘƻ ǘƘŜ ǇǊƻǇŜǊ ǾŀƭǳŜ

ōŜŦƻǊŜ ŎŀƭƭƛƴƎ ǘƘŜ ΨreadColourΩ ŦǳƴŎǘƛƻƴΦ ¢ƘŜ ΨŀǊǊŀȅLƴŘŜȄΩ ƛǎ ƛƴƛǘƛŀƭƭȅ ǎŜǘ ǘƻ л ƛƴ ƻǳǊ Ƴŀƛƴ

program module (will be shown later, or see the complete code picture at the end). This is

done because we are using a single array to store the readings for all the squares and hence

we need to keep it pointing to the correct index at all times.

A.S. Relevance:

A task sufficiently rich to allow the student to meet the standard (2.46
A/M/E), a modular algorithmic structure where modules constitutes a
well structured logical decomposition of a task (2.45 Achievement
with Excellence), a modular algorithmic structure with named
modules where at least the top level module contains calls to other
modules (2.45 A/M/E), accessing & using data in indexed sequential
data structures (2.45 & 2.46 Achievement)

17 | P a g e

V Step 2: Storing and reading the colours data

We have mentioned earlier how this can be achieved in several approaches. However, due

to current limitation of 12Blocks (not supporting multi-dimensional arrays), we decided to

simply use a single array to hold the data for all the rows. You have already seen this when

ǿŜ ōǳƛƭǘ ǘƘŜ ΨreadColourΩ ŦǳƴŎǘƛƻƴ ŀōƻǾŜ. This will add an overhead of having to deal with

the data in a special way to find out the solution (the flipped square) later. However, this

had actually made the task of storing the data easier ŦƻǊ ǳǎ όǎŜŜ ǘƘŜ ΨreadColourΩ ŦǳƴŎǘƛƻƴύ.

 ¢ŜŀŎƘŜǊΩǎ ¢ƛǇΥ This task is probably the hardest part of the entire program. It will

require some careful thought and paper (or board) sketches and diagrams.

Preferably, teachers should have a brainstorming session with their students to work

out the solution together. First, students need to work out the key idea of how the

flipped square can be found in the first place. After understanding this, they need to

work out how we can extract the data from a single array in a manner that would

ŀƭƭƻǿ ǳǎ ǘƻ ŀǇǇƭȅ ǘƘŜ Ψfind flipped squareΩ rule to the data and ultimately finding the

solution. The last step would be to translate that into an algorithm or pseudo code

so it can be easily programmed in 12Blocks.

 ¢ŜŀŎƘŜǊΩǎ ¢ƛǇΥ This would be a very good task to ask the students to develop on

paper ŀ Ψmodular algorithmic structure constituting logical decomposition of the

taskΩ, if desired (2.45 with Excellence).

 !ǎ ƛǘ ƛǎ ƛƭƭǳǎǘǊŀǘŜŘ ƛƴ ǘƘŜ Ψ/ŀǊŘ CƭƛǇ aŀƎƛŎΩ ƎŀƳŜ ƻƴ csunplugged, the rule for finding the

flipped square is simply to look for the row and column that have an odd number of

coloured squares. The flipped square is where those row and column meet. So, for our

purpose here, we will need to process the data in the array to find out that specific column

and row where an odd number of coloured squares happen.

A.S. Relevance:

Understanding of error control coding (2.44 Achievement), discussing
how a widely used technology is enabled by error control coding (2.44
Achievement with Merit), a modular algorithmic structure where
modules constitutes a well structured logical decomposition of a task
(2.45 with Excellence), a task sufficiently rich to allow the student to
meet the standard (2.46 A/M/E)

18 | P a g e

We will illustrate diagrammatically how to solve the problem discussed above:

Our single array for the 6 by 6 matrix will simply look like this:

1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 3 3 34 3 5 36

In the above diagram, the numbers inside each cell refer to the indexes. In the actual array

after the TBot has passed over all squares, each cell will contain either a 0 (black) or a 1

(white). We can now re-arrange the array into a 6 by 6 matrix (as the diagram below) to

make it easy for us to visualize the problem.

Diagram 1: Mapping the single array to the squares layout

Now, it is easy to see how our single array actually maps to the original layout of the squares
which the robot has passed over. So to process the data, we will need first to go through
each row to find the one containing the odd coloured squares, and then do the same for the
columns.

 Tip: To find the row or column with the odd number of coloured squares, we

simply construct a loop that goes through each row (or column) at a time. Inside the

loop, we put a counter that adds up the values (0s and 1s) of the row (or column)

cells. The row (or column) we are looking for would then simply be the one that has

a total with odd number.

19 | P a g e

V Processing the rows

Obviously, we will need a loop to process the rows, but the problem is how to deal with the

messed up indexes. To construct such a loop, we will need a dynamic way to specify the

start and end index for each row. It would have been easy if all rows started and ended with

matching indexes, but in our case they are not. To solve this problem, note that simply by

adding the number 6 to the start and end indexes of a row, we can determine the start and

end indexes of the next row. This should enable us now to build a loop that processes each

one of the rows dynamically. The picture below shows a user defined function for

processing the rows:

Explanation: The inner repeat loop is used to calculate the total for each row by

reading and adding the values in its cellsΦ ! ΨgetΩ ŎƻŘŜ ōƭƻŎƪ ƛǎ ǳǎŜŘ ǘƻ ǊŜŀŘ ǘƘŜ ŀǊǊŀȅ
data and store it in a temporary variable that is in turn used to perform the addition. The
startIndex and endIndex are initially set to 1 and 6 respectively. When the first run of this
ƭƻƻǇ ŎƻƳǇƭŜǘŜǎΣ ǘƘŜ ΨŎƻǳƴǘŜǊΩ Ǿariable will hold the total for the first row. Then, both
indexes are incremented by 6 to make the loop ready for processing the next row. The outer
ǊŜǇŜŀǘ ƭƻƻǇ ƛǎ ǳǎŜŘ ǘƻ ŜƴŀōƭŜ ǳǎ ǘƻ Ǝƻ ƻǾŜǊ ŀƭƭ ƻŦ ǘƘŜ с ǊƻǿǎΦ ¢ƘŜ ŎƻƴŘƛǘƛƻƴ Ψcounter%2=ҐлΩ is
used to check if the total is odd or even by calculating the remainder of dividing by 2. Since
we will have one and only one row with an odd number of coloured squares, we only need
to move to process a next row if the total of the current row was not odd. Once we find a
row with odd total then we stop processing the rows. ! ΨrowΩ ǾŀǊƛŀōƭŜ ƛǎ ǳǎŜŘ ǘƻ keep track
at which row the outer loop has stopped, since that would be the one we are looking for.

