
Learning with TBot
Version .4

Warranty

OneRobot warrants its products against defects in materials and workmanship for a period of 90 days from receipt of
product. If you discover a defect, OneRobot will, at its option, repair or replace the merchandise, or refund the purchase
price. Before returning the product to OneRobot, call for a Return Merchandise Authorization (RMA) number. Write the
RMA number on the outside of the box used to return the merchandise to OneRobot. Please enclose the following along
with the returned merchandise: your name, telephone number, shipping address, and a description of the problem.
OneRobot will return your product or its replacement using the same shipping method used to ship the product to
OneRobot.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full
refund. OneRobot will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is
void if the product has been altered or damaged. See the Warranty section above for instructions on returning a product
to OneRobot.

Copyrights And Trademarks

This documentation is Copyright 2014 by OneRobot. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with OneRobot products. Any other uses are not
permitted and may represent a violation of OneRobot copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
OneRobot. Duplication for educational use, in whole or in part, is permitted subject to the following conditions: the
material is to be used solely in conjunction with OneRobot products, and the user may recover from the student only the
cost of duplication. Check with OneRobot for approval prior to duplicating any of our documentation in part or whole
for any other use. OneRobot, TBot are trademarks of OneRobot. 12Blocks, ViewPort are trademarks of HannoWare.
Propeller and Spin are trademarks of Parallax Inc. If you decide to use any of these words on your electronic or printed
material, you must state that “(trademark) is a (registered) trademark of OneRobot” upon the first use of the trademark
name. Other brand and product names herein are trademarks or registered trademarks of their respective holders.

Disclaimer Of Liability

OneRobot is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or
under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property,
or any costs of recovering, reprogramming, or reproducing any data stored in or used with OneRobot products.
OneRobot is also not responsible for any personal damage, including that to life and health, resulting from use of any of
our products. You take full responsibility for your OneRobot application, no matter how lifethreatening it may be.

Errata

While great effort is made to assure the accuracy of our texts, errors may still exist. Occasionally an errata sheet with a
list of known errors and corrections for a given text will be posted on the related product page at www.OneRobot.org. If
you find an error, please send an email to support@OneRobot.org.

mailto:support@onerobot.org

Table of Contents
Preface..4

The Wonderful World of Robots..4
Audience..4
Support Forums..4
Resources For Educators...4
Educators Courses..4
Copyright Permissions for Educational Use..5
About The Author..5

Chapter 1: Getting Started..6
Step 1: Connect TBot to your PC with a USB cable...6
Step 2: Install Software..6
Step 3: Your First Program ...7
Hints and Tips..7

Chapter 2: Simple Programs...8
Basic Movement..8
Navigation..8
Square Dancing..8
Music...8
More Sample Programs:..9

Chapter 3: Advanced Programs..10
Multiprocessing...10

Chapter 4: Sample Classwork..10
Lab 1 - Introduction to TBot..10
Lab 2 - Line Follower..10
Lab 3 - Maze Solver...10

Chapter 5: Challenges and Competitions...11
Robot Floor Exercise...11

Purpose...11
Rules...11

Line Following...11
Objective...11
Skills Tested..11

Capture the Flag...11
Overview..11
Game Field...12
Game Rules..12

Hex Blitz ...13
Overview ...13
Game Field ..13
Game Rules ...13
Robot Modifications ..14
Other Notes ..15

Chapter 6: Technical Details...16
Pin Connections to Arduino Nano...16
Schematics...16
Instruction Set..17

Chapter 7: Troubleshooting..25
Appendix A: Optional Parts..26

Preface

The Wonderful World of Robots
The TBot is a multipurpose educational robot that was designed to make learning both fun and exciting. It is suitable for
a wide range of experiments and activities right from kindergartens up to university students. It has many features like
motor control, 2-axis gripper, optional LCD display, powerful sensors, encoders, sound playing, synthesizing,
recording, plus many other features. Most interesting is that it can be programmed with the simple drag and drop
12Blocks language making it accessible to a wider range of users.

TBot is intended to help roboticists of various skill levels take their designs to the next level with microcontrollers and
the knowhow to implement them effectively.

The goal of this text is to get students interested in and excited about the fields of engineering, mechatronics, and
software development as they design, construct, and program an autonomous robot. This series of hands-on activities
and projects will introduce students to basic robotic concepts using the OneRobot TBot.

The activities and projects in this text begin with setting up your programming environment to help you write your first
TBot program and then move on to various activies that highlight different capabilities of the TBot.

Audience
This text is designed to be an entry point to technology literacy, and an easy learning curve for embedded programming
and introductory robotics. The text is organized so that it can be used by the widest possible variety of students as well
as independent learners. Middle-school students can try the examples in this text in a guided tour fashion by simply
following the check-marked instructions with instructor supervision. At the other end of the spectrum, pre-engineering
students’ comprehension and problem-solving skills can be tested with the questions, exercises and projects (with
solutions) in each chapter summary. The independent learner can work at his or her own pace, and obtain assistance
through the forum cited below.

Support Forums
OneRobot maintains free, moderated forums for our customers, covering a variety of subjects at
http://onerobot.org/forums/ including the 12Blocks programming language and the TBot robot.

Resources For Educators
To supplement our products, we provide a curriculum for the classroom. Designed to engage students, each lab contains
full source code, online video, “How it Works” explanations, schematics, and wiring diagrams or photos for a device a
student might like to use. Curriculum targeting different age groups are available online at
http://onerobot.org/ols/ols.php

Educators Courses
These hands-on, intensive 2 hour virtual courses for instructors are taught by OneRobot engineers to prepare teachers
for the classroom. Contact us for details at http://onerobot.com/contact.html

http://onerobot.org/ols/ols.php
http://onerobot.org/forums/
http://onerobot.com/contact.html

Copyright Permissions for Educational Use
Our curriculum and manuals are all available as free PDF downloads, and may be duplicated as long as it is for
educational use exclusively with OneRobot products and the student is charged no more than the cost of duplication.
The PDF files are not locked, enabling selection of text and images to prepare handouts, transparencies, or PowerPoint
presentations.

About The Author
Hanno Sander earned a degree in Computer Science from Stanford University, where he built one of the first hybrid
cars, collaborated on a microsatellite, and studied artificial intelligence. He later founded a startup to develop
customized information services and then transitioned to product marketing in Silicon Valley with Oracle, Yahoo, and
Verity. Today, Hanno’s company HannoWare seeks to make sophisticated technology—robots, programming languages,
debugging tools, and oscilloscopes—more accessible. Hanno lives in Christchurch, New Zealand, where he enjoys his
growing family and focuses on his passion of improving education with technology.

Special Contributors: Dave Westbrook, Ingolf Sander, Professor Tim Bell, Steve Woodrough

Chapter 1: Getting Started
By the end of this chapter you'll be writing your first program for your TBot! Let's get started with an overview of
what's involved.

A powerful Arduino microcontroller control your TBot's motors, lights, sounds, grippers, communication and sensors.
To control your TBot you'll write programs using the 12Blocks visual language and download them using a USB cable.
The following figure illustrates these concepts:

Step 1: Connect TBot to your PC with a USB cable
To program your TBot you need to connect it to your PC with a USB cable. Start by
connecting the USB male connector to the front of your TBot. Finish by connecting
the USB cable to your PC.

Your TBot batteries will automatically be charged when connected to USB. Just like
other USB devices- for example, the Apple iPod- you don't have to worry about its
state of charge- the TBot charges itself.

When connected to USB your TBot will run from your PC's power to allow
programming, play sounds, and manipulate it's LED's. To run the TBot's motor and
gripper for movement, you'll need to slide the power switch on the bottom to “ON”.

When your TBot is not connected to USB, it will run the last program stored into it's permanent memory when you slide
the power switch to “ON”.

Step 2: Install Software
12Blocks is a visual and easy to use drop-and-drag programming language that is highly suitable for educational
purposes. It is mainly targeted at programming robots and microcontrollers and supports various types of devices.

System Requirements: You will need a personal computer to run the 12Blocks software. Your computer will need to
have the following features:

• Microsoft Windows 2K/XP/Vista/7 or newer operating system (Beta for OSX and Linux is
available)

• An available USB port
• Internet access and an Internet browser program

Download the 12Blocks installer from http://12blocks.com.
A wizard interface will help you install and configure the
program for your PC. The program will start automatically
and show a start screen. If “Arduino.TBot” is not shown in
the first 2 lines, add it using the “Custom Configuration” in
to bottom left.

Click on a TBot activity or “New” to get started with
robotics!

http://12blocks.com/

Step 3: Your First Program

For our first program we'll program the TBot to beep when it's button is pushed. Drag the blocks to the worksheet and
press the “Run” command in the toolbar.

Concepts:

– Use a “start” block from the “controls” library to begin a stack of blocks

– Drag the “play tone” block” from the “sound” library and attach it to the “start” block.

– Click on the yellow part of a block to change a parameter.

Hints and Tips
• Press F1 to access Help for a reference of all blocks, language comparison, etc.

• 'Guided Tutorials' on the “File” menu show you how to program visually

• 'Example files' on the “File” menu gives you samples to learn from

• Programs loaded to the TBot are stored there until the next program is loaded. You can disconnect the USB
cable, turn-off the robot, and when you turn it on again it'll run your program from the start.

• Your TBot will charge when connected via USB

• To use the motors while connected via USB switch your TBot to “ON”

• Connect your TBot to other sensors and devices with the expansion connecter- refer to Chapter 6 for details.

Chapter 2: Simple Programs

Basic Movement
Now it's time to make the robot move. Make sure the TBot is in a safe position, then switch it to “Run with motors”
before loading it.

Concepts:

– “File>New” to start a new program

– “File>Save” to save it

– “move” and “turn” are in the “motion” section

Navigation
The TBot can be programmed to perform a variety of maneuvers. The maneuvers and programming techniques
introduced in this chapter will be reused in later chapters. The only difference is that in this chapter, the TBot will
blindly perform the maneuvers.

In later chapters, the TBot will perform similar maneuvers in response to conditions it detects with its sensors.

Square Dancing
In the last program the TBot made 2 moves. Let's improve that by using the “repeat x” block to repeat a set of blocks a
number of times to move in a square.

Music
You can copy and paste blocks from one program to another by selecting the blocks you need and using the
“Edit>Copy” menu

The “sound” section contains different blocks to make sounds.

More Sample Programs:

1. Move in a square 2. Play musical notes then song

3. Flash LED 4. Move on black surface

5. Blink led and play sound at the same time 6. Make random sounds

Chapter 3: Advanced Programs

Multiprocessing
Use multiple “start” blocks to do multiple things at the same time.

Chapter 4: Sample Classwork

Lab 1 - Introduction to TBot
• Learn to use tool chain to write programs and load into robot
• Use user buttons to control program execution
• Read Sensors (Proximity, Microphone)
• Drive motors under basic sensor control
• Use LED/Speaker for representing robot status

Lab 2 - Line Follower
• Learn to use real-time debugging tools (Terminal, Data Signal Oscilloscope and Logic Analyzer)
• Read Line Sensors
• Analyze digital input/output signals controlling the line sensors and motors
• Control motors using sensors and reactive control loops

Lab 3 - Maze Solver
• Learn to utilize multiple control techniques to complete a task
• Extend line following routines to handle corners and intersections
• Use proximity detectors to find "dead-ends"
• Create an internal model of the environment to solve problems

Chapter 5: Challenges and Competitions
Some of the following competitions are provided courtesy of Seattle Robotics Society.

Robot Floor Exercise

Purpose

The floor exercise competition is intended to give robot inventors an opportunity to show off their robots or other
technical contraptions.

Rules

The rules for this competition are quite simple. A 10-foot-by-10-foot flat area is identified, preferably with some
physical boundary. Each contestant will be given a maximum of five minutes in this area to show off what their robot
can do. The robot's contestant can talk through the various capabilities and features of the robot. As always, any robot
that could damage the area or pose a danger to the public will not be allowed. Robots need not be autonomous, but it is
encouraged. Judging will be determined by the audience, either indicated by clapping (the loudest determined by the
judge), or some other voting mechanism.

Line Following

Objective

To build an autonomous robot that begins in Area "A" (at position "S"), travels to Area "B" (completely via the line),
then travels to the Area "C" (completely via the line), then returns to the Area "A" (at position "F"). The robot that does
this in the least amount of time (including bonuses) wins. The robot must enter areas "B" and "C" to qualify. The exact
layout of the course will not be known until contest day, but it will have the three areas previously described.

Skills Tested

The ability to recognize a navigational aid (the line) and use it to reach the goal.

Capture the Flag

Overview

• Coordinate between multiple robots to complete a task
• Develop a protocol to handle communication between robots
• Create a strategy that maximizes the team's final score while following game rules

This is a competitive and cooperative challenge involving 2 teams of 2 robots per team. The objective of the game is
follow a winding "maze-like" line from one end to the other in order to score points. Each robot will be equipped with a
special beacon that it can activate when it reaches one end of the line. This active beacon becomes the "flag" that the
robot must carry all the way to the opposite end in order to score points.

When a robot's beacon is activated it flashes a visible light, but it also begins transmitting an IR beacon for other robots
to track onto using their front proximity sensors in passive mode. Each beacon unit is also equipped with several IR
remote receivers. Opposing robots can "tag" the robot trying to make a flag run by sending a well aimed IR signal at the
active beacon. A successful tag will prevent the team from scoring those points and temporarily disable the tagged
robots motors.

Game Field

The game field is a set of tiles arranged into 4 continuous, non-intersecting winding lines. Each robot starts the game
assigned to a specific line. At no point in the game is a robot allowed to drive completely off its line.

On each half of the board there are two lines that are interleaved. Each line has the same number of turns, but one line is
longer. Each team has a long and short line on opposite sides of the field.

Game Rules

• Each game consists of a single 90 second match.
• A team scores 2 points for every time that it successfully travels the entire line from end to end while its

beacon is active
• A team scores 1 point for every time that it "tags" an opponent robot while it has an activate beacon
• A team scores 5 points if both robots are at the end of their lines at the end of the game
• Any robot that drives completely off its line will be immediately removed from the game board
• A robot is considered off the line if no part of the line is underneath the robot.
• Robot Collisions

◦ Robot to robot contact is considered a collision when robots contact sufficiently to cause at least
one robot to drive off its line

◦ 2 point penalty is given to the offending robot and both robots are reset and placed back in their
starting position

◦ The offending robot is the robot that was outside of its own tile when the collision occurred, if both
robots are equally at fault then no penalty is given

• Beacon Overview
◦ Each beacon is controlled by a simple 2 wire interface
◦ Flag Request - this signal is sent from robot to beacon to activate the flag
◦ Flag Carry / Drop - this signal is sent from the beacon to robot to indicate when it haslost its flag

• Beacon Penalty
◦ Robots must always operate their beacons according to the game rules. Any beacon violation will

result in a 2 point penalty, and the offending robot is reset and placed back in the starting position.
• Beacon Rules

◦ A robot can only activate its beacon when it is located at the end of a line.
◦ At the beginning of the game (or whenever its position is reset due to another rule violation) the

robot must travel to the opposite end of the line before it can activate the beacon.
◦ A robot is allowed to drop its beacon at any time, but it will only be given points if it keeps the

beacon active for the entire length of the line.
◦ A robot must remain disabled the entire time the flag drop signal is held low by the beacon

Hex Blitz

Overview

This is a competitive and cooperative challenge involving 2 teams of 2 robots per team. The objective of the game is to
find and move balls on a hex grid playing field in order to score points.

Each team robots are allowed to move anywhere over its half of the playing field and can score points when a ball is
successfully moved to the opposite side of the field over special scoring markers. At the end of the game each team
receives additional points based on how many balls are on the opposite side of the field.

Coordinate between multiple robots to complete a task. Create and implement a strategy that maximizes the team's
final score while following game rules

Game Field

The game field approximately 6 ft x 4 ft and is composed of 10 hexagon platforms connected with bridges and ramps.
Four of the platforms are raised higher than the others. Each platform contains a black center marker and black lines
leading to other platforms of the same team color or scoring areas for that team.

Platforms of different heights are connected with ramps, and platforms of the same height are connected with bridges.
When a ramp connects opposite team zones, it is a scoring ramp and is marked with a checkered scoring area. A
physical barrier at the intersection of opposing zones prevents a robot from accessing the opposite team's field areas but
balls will pass under.

Walls surrounding every platform and connecting component prevent the robots and balls from leaving the playing area.

Game Rules

• Each game consists of a single 90 second match.
◦ Robots that do not stop moving at the end of the 90 seconds may be penalized if their movement

causes or prevents any points from scoring as balls come to rest.
• A team scores 1 points for every time that it passes a ball down a scoring ramp into the opponents side

of the field.
◦ Scoring ramps are the ramps that connect a high platform of one team to a low platform of the

opposite team.
◦ The point is scored when the ball crosses over the checkered scoring zone.
◦ A defender is allowed to stop the ball from crossing over the score zone.
◦ At the scoring ramp the zone barrier is at the high end of the ramp, allowing only the defending

team access to the entire ramp, however, the slope of the ramp ensures a ball will always score
unless a robot actively defends it.

◦ No points are scored when a ball is pushed up the scoring ramp, by a defender. However, the points
will be scored every time the ball passes completely through the score zone moving down the ramp

regardless of who last touched the ball.
• A team scores 2 points for every ball that is on the opposite side of the field at the end of the game.

◦ Final ball positions are scored after all motion stops.
◦ A ball touching one the black areas at zone barriers is not scored for either team.
◦ Balls touching the black guide lines are scored the same as if they were touching the closest

colored field area.
◦ A team scores a 3 point bonus for every ball that is touching the black center marker on a platform

at the end of the game.
• Any ball that leaves the playing field during the game will be returned to the field at the point closest to

its exit location.
• Robot Collisions

◦ Robots are expected to make routine, vigorous contact with all elements of the playing field,
including the balls, zone barriers and walls.

◦ If a robot's design or programming causes it to intentionally damage any game element or other
robots, it will be disqualified.

◦ Some robot to robot contact may occur when two opposing robots are at a zone barrier
simultaneously. Generally, the extent of contact will be limited by the barrier itself, otherwise this
is considered normal and fair play.

◦ There is significant potential for robot collisions to occur within the same team. This must be
considered by each team's programming strategy.

• At no point should a robot be touched by players after the game has begun.
◦ A violation of this rule will result in the offending robot being immediately removed from game

play.
◦ A player may voluntarily remove their robot at any time, however, that robot will not be allowed to

be returned to play during the game.
• Game Start

◦ Robots must be positioned on the raised platforms at the start of the game (see Figure 2)
◦ A robot can be placed anywhere on the platform, as long as some part of the robot is over the black

center marker.
◦ The 10 game balls will be arranged on each side of the zone barrier of every bridge as shown in

Figure 2.
◦ Robots should be designed to start the match when a sufficiently loud starting signal is detected

(hand clap, whistle, buzzer, etc)
◦ Robots should be designed to run autonomously for exactly 90 seconds.
◦ If multiple false starts occur, the offending robot will have to be started manually at the buzzer.

Normal end-of-game violations will be in effect even if there is a timer mismatch due to late
manual starting.

Robot Modifications

• Robots are expected to be customized with ball manipulators, guards, etc.
◦ Robots must have some physical mechanism that ensures the robot's body (metal frame, circuit

board, etc) cannot move past a zone barrier.
◦ A robot add-on is legal if it doesn't extend past the black zone marker in the middle of the bridges

when the robot is in full contact with the barrier itself (this is about 1 1/2 inches).
◦ Sufficient guarding should be added to protect a robot against contact with game elements and

other robots.
• Robots can be extended with any kind of custom sensor
• Robots can be extended with additional motors or servos
• Robots can use any kind wireless communications for coordination between robots.

◦ Absolutely no communication with non-robots should occur during any game
◦ Unintentional interference of opposing team communications should be avoided

▪ Teams using the same wireless technology should plan to coexist with other users of that
technology (different channels, network ID, etc)

• Intentional interference of opponent team communication is not acceptable and violators will be
disqualified.
◦ The use of IR for proximity ranging on the robot is never considered interference even if the other

team uses IR for communication.
• Any kind of monitoring of opponent team communications is legal and fair-play as long as such

monitoring is completely passive.

◦ Here passive means that monitoring activity cannot have any measurable impact on the opposing
team's communications.

◦ If monitoring is determined to not meet the passive criteria, then it must be disabled or it is
considered intentional interference.

Other Notes

• Most interior wall surfaces will be coated to intentionally minimize IR reflectance. This coating might
just be black paint, but could be other textured materials that absorb and scatter IR light. This is to allow
game balls to be the primary objects detected by IR proximity sensors.
◦ The black guidance lines should be used as the primary means of navigation.
◦ The scoring ramps are the exception to this rule, since there are no lines for guidance, the walls will

be left white so they can be used for wall following.
• The balls will be standard 40mm matte white ping pong balls. Balls significantly damaged during

matches will be replaced before the start of the next game, but playing with some minor damage should
be expected.

• The zone coloring will be significantly lighter than it appears in the rendered images, however, teams
should expect to need different line sensor calibration depending on which color they are playing as.
◦ Teams will be allowed to run a quick calibration routine prior to placing robots on the field at the

beginning of every match. These pre-match calibrations should take no more than 10-15 seconds.
◦ Teams will not be allowed to recalibrate due solely to a false start (even if the restart is not their

fault)
• A team is allowed to request the "Strict Robot Placement" rule if they decide its strategically important

to them
◦ Teams requesting this extra rule should inform the referee prior to starting the match
◦ The referee will flip a coin to determine the first team placement: Head = Red, Tail = Blue
◦ Then each team will alternate placing and positioning a robot on the field
◦ After a robot is placed on the field, it cannot be re-positioned
◦ Once this rule is put into effect, it remains in effect for all matches between those 2 teams
◦ Without this rule, either team can reposition their robots as much as they want until both teams tell

the referee they are ready to begin.

Chapter 6: Technical Details
• Line detectors, microphone, ultrasound proximity, buttons, LEDs
• Two-axis grippers to lift and grip objects
• Fast geared motors with encoders to move 1 m/sec with accuracy of 1 mm.
• Amplified speaker and graphical LCD
• Fully assembled and ready to run out of the box.
• Included lithium battery charges when connected to USB
• Powerful Arduino processor
• Programmable with 12Blocks and C code

Pin Connections to Arduino Nano

Schematics

Controller Overview
Line Sensor R A0

Atmega

0,1 Bluetooth
Line Sensor C A1 2,3 Encoder L,R
Line Sensor L A2 4 LCD D

A3 12 LCD DC
LCD reset A4 13 LCD CLK
Ping Echo A5 5,6 Motor L
Microphone A6 7,8 Motor R
Battery Voltage A7 9,10 Gripper

11 Speaker

Multiplexed
buttons,
Ping Trigger

Instruction Set

Tab Section Name Detail

control basic start start running a stack of blocks

repeat run the inner blocks forever

repeat <number> times run the inner blocks a number of times
1 parameter:
NUMBER: number of times to loop

repeat <index variable> from
<start> to <end> step <step>

run the inner blocks with an index variable
4 parameters:
INDEX VARIABLE: variable name whose value ranges from the start to the end
values
START: the value with which the loop will start
END: the value with which the loop will end
STEP: the amount by which the index variable will change after each cycle

repeat with <variable list> as
<values>

run the inner blocks with variables whose values changes over time
2 parameters:
VARIABLE LIST: variable names whose values change over time
VALUES: values the variables will take on

repeat while <condition> run the inner blocks while the condition is true
1 parameter:
CONDITION: condition that needs to be true to run the inner stacks

repeat until <condition> run the inner blocks until the condition is true
1 parameter:
CONDITION: condition that needs to be true to keep running the inner blocks

wait <duration> pause for a while
1 parameter:
DURATION: time in milliseconds

if <condition> else runs the inner blocks if the condition is true
1 parameter:
CONDITION: when this condition is true, the inner blocks will run

switch <expression> runs the inner block whose value matches the condition
1 parameter:
EXPRESSION: expression to switch on
MATCH: when this matches the expression, the inner blocks will run
*Right click on block to access Properties for custom parameters

<comment> document your code with text, a schematic or an image
1 parameter:
COMMENT: comment which explains your code

advanced <first value> <comparer>
<comment>

condition block for if and repeat blocks
3 parameters:
FIRST VALUE:
COMPARER: compare type
COMMENT:

break out of repeat break out of repeat loop and continue with the following block

continue to start of repeat continue to start of repeat loop

stop stop the program

constant:<constants> assign names to numbers that won't change during the program
1 parameter:
CONSTANTS: comma separated list of names and their values

<code> inline programming code written in the device's language
1 parameter:
CODE: textual representation of code to inline into the program

state when in state <state name> run a set of blocks when the state machine matches this state
1 parameter:
STATE NAME: name of the state assigned to this stack of blocks

run state machine <name of state
machine>

run a state machine that manage program behavior using a state variable
1 parameter:
NAME OF STATE MACHINE: variable to use for storing machine's state

set state to <state name> set the state of the state machine
1 parameter:
STATE NAME: the state machine's new state

event on <event> run a set of blocks when something happens
1 parameter:
EVENT: condition which starts this stack of blocks

when <condition> run a set of blocks when a condition is true
1 parameter:
CONDITION: condition which starts this stack of blocks

task <task name> group a set of blocks into a named task
1 parameter:
TASK NAME: name of task associated with this stack of blocks

start task <task name> start a named task and continue right away
1 parameter:
TASK NAME: task to run

start task <task name> and wait run a named task and wait for it to finish before continuing
1 parameter:
TASK NAME: task to run

graphics print <string> to (<x>,<y>) print text to a location on the screen
3 parameters:
STRING: text to print
X: x position of cursor
Y: y position of cursor

draw background <background> print text to a location on the screen
1 parameter:
BACKGROUND: text to print

draw <sprite> to (<x>,<y>) print text to a location on the screen
3 parameters:
SPRITE: text to print
X: x position of cursor
Y: y position of cursor

sound play synthesized song <sound> play a synthesizer file
1 parameter:
SOUND: name of hmus file to play

stop playing song/effect stop playing sounds on the synthesizer

play sound effect <sound> play a sound effect file
1 parameter:
SOUND: name of hsfx file to play

play score <score> play a score of music notes as tones
1 parameter:
SCORE: score to play

pluck score <score> play a score of music notes as plucked notes
1 parameter:
SCORE: score to play

set pluck volume to <volume>
tempo to <tempo> sustain to
<sustain>

set the parameters of how plucked music sounds
3 parameters:
VOLUME: volume to pluck at
TEMPO: tempo of plucking
SUSTAIN: sustain of pluck

play wav file <sound> at volume
<volume>

play a wav file
2 parameters:
SOUND: name of wav file to play
VOLUME: volume to play file at

record sound for <duration> ms record a sound to memory
1 parameter:
DURATION: milliseconds to record sound

play recorded sound at volume
<volume>

play back recorded sound from memory
1 parameter:
VOLUME: volume to play sound at

read microphone sense the sound level with the microphone

read microphone amplitude sense the overall amplitude with the microphone

read microphone frequency sense the dominant frequency of sound with the microphone

play tone <frequency> for
<duration> ms

play a tone of music
2 parameters:
FREQUENCY: frequency of tone
DURATION: milliseconds to play tone

set tone volume to <volume> set how loud tones will be played
1 parameter:
VOLUME: volume to play tone at

speak <speech> speak text using a speech synthesizer
1 parameter:
SPEECH: text to say

speak file <speech> speak sounds specified in a file
1 parameter:
SPEECH: text to say

spell <speech> spell text with a speech synthesizer
1 parameter:
SPEECH: text to say

set speech volume to <volume> set how loud speech will be spoken
1 parameter:

VOLUME: volume to use for speech

speech parameters <glottal
pitch>,<vibrato pitch>,<vibrato
rate>,<pace>

set the parameters of the speech synthesizer
4 parameters:
GLOTTAL PITCH: voice pitch, 100=110hz
VIBRATO PITCH: voice vibrato pitch, 48=+/- half octave swing
VIBRATO RATE: voice vibrato rate, 52=4Hz
PACE: rate at which word is spoken

set speaker <speaker> to pitch
<base>

Assign a base pitch to speaker number
2 parameters:
SPEAKER:
BASE:

motion move move <amount> mm <turn-ratio> move a distance with a turning ratio
2 parameters:
AMOUNT: amount to drive robot in mm, negative to reverse
TURN-RATIO: ratio of left and right motor speeds that affects how the robot will
turn while moving

turn <degrees> deg <direction> turn an amount in a direction
2 parameters:
DEGREES: degree to turn robot, negative to reverse
DIRECTION: which way to turn the robot, negative to turn left

move <amount> mm <turn-ratio>
in <time> msec

move a distance with a turning ratio in a time
3 parameters:
AMOUNT: amount to drive robot in mm, negative to reverse
TURN-RATIO: ratio of left and right motor speeds that affects how the robot will
turn while moving
TIME: milliseconds

turn <degrees> deg <direction> in
<time> msec

turn an amount in a direction in a time
3 parameters:
DEGREES: degree to turn robot, negative to reverse
DIRECTION: which way to turn the robot, negative to turn left
TIME: milliseconds

set left motor speed to <left> and
right to <right>

set the speed of the drive motors; the motors will maintain this speed until the next
move block is run
2 parameters:
LEFT: speed for the left motor
RIGHT: speed for the right motor

set finish move mode to <action> set what should happen when move and turn blocks finish running
1 parameter:
ACTION:

set cruise speed <speed at which
robot will turn/move>

set the speed of the move and turn blocks
1 parameter:
SPEED AT WHICH ROBOT WILL TURN/MOVE:

configure move with
<move>,<turn>

set scale factor for robot move/turn blocks
2 parameters:
MOVE: amount robot will move, higher numbers move further
TURN: amount robot will turn, higher numbers turn further

configure motor with
<zerol>,<zeror>,<gainl>,<gainr>,
<gainl>,<gainr>

set motor offset and scale parameters
6 parameters:
ZEROL: zero offset for left motor
ZEROR: zero offset for left motor
GAINL: +gain for left motor
GAINR: +gain for right motor
GAINL: -gain for left motor
GAINR: -gain for right motor

servos set servo <pin> to <position> set a servo's position
2 parameters:
PIN: pin number of servo
POSITION: target position for servo

move servo <pin> to <position>
% over <time> msec

ramp a servo's position over time
3 parameters:
PIN: pin number of servo
POSITION: target position for servo, from -30 to 130
TIME: milliseconds to ramp the servo to the new position

ramp servo <pin> to <position>%
over <time>

ramp a servo's position over time while running other blocks
3 parameters:
PIN: pin number of servo
POSITION: target position for servo, from -30 to 130
TIME: milliseconds to ramp the servo to the new position

idle servo <pin> idle a servo- don't power it
1 parameter:
PIN: pin number of servo

set gripper <shoulder>,<hand> in
<time> msec

set gripper
3 parameters:

SHOULDER: position
HAND: position
TIME: position

sense IR distance on <pin> sense distance with an IR/LED
1 parameter:
PIN: pin number of the IR/LED

ultrasound distance on <port> sense distance with ultrasound sensor
1 parameter:
PORT: port of the sensor

brightness on <pin> sense light level with QTI sensor
1 parameter:
PIN: pin number of the QTI sensor

read encoder <side> read number of encoder pulses
1 parameter:
SIDE: side to measure

read speed <side> read speed of encoder pulses
1 parameter:
SIDE: side to measure

read line <shoulder> set gripper
1 parameter:
SHOULDER: position

read ping set gripper

read button set gripper

read battery set gripper

read mic set gripper

mouse mouseX read the x position of the mouse

mouseY read the y position of the mouse

mouseZ read the z position of the mouse

set mouse to (0,0,0) reset x,y and z

mouse button down determine if the mouse button was clicked

key key <key> pressed determine if a keyboard key is pressed
1 parameter:
KEY: key to test

8031 read adc on pin <data out pin> sense the adc's value
1 parameter:
DATA OUT PIN: data out pin followed sequentially by the clock pin and the chip
select pin.

read 10 bit adc on pin <adc> sense the adc's 10 bit value
1 parameter:
ADC: adc pin

time reset timer reset the internal timer

elapsed time sense how much time has passed since the last reset

vars variables set <variable> to <value> set a variable to a value
2 parameters:
VARIABLE: variable to set
VALUE: new value for variable

change <variable> by <amount> change a variable's value
2 parameters:
VARIABLE: variable to change
AMOUNT: amount added to variable

set bit <bit> of <variable> to
<new bit value>

set a bit
3 parameters:
BIT: bit to set
VARIABLE: variable to modify
NEW BIT VALUE: bit value

get bit <bit> of <variable> get a bit
2 parameters:
BIT: bit to get
VARIABLE: variable to inspect

random(<max>) return a random number between 0 and the specified maximum
1 parameter:
MAX:

set <variable> to address of
<value>

get pointer to a variable
2 parameters:
VARIABLE: pointer
VALUE: pointee

arrays set <array>[<index>] to <value> set an array's item to a value
3 parameters:
ARRAY: array to set
INDEX: index of array item to set

VALUE: new value for array item

change <array>[<index>] by
<amount>

change an array's item
3 parameters:
ARRAY: array to change
INDEX: index of array item to change
AMOUNT: amount added to array item

get <array>[<index>] get an array's item
2 parameters:
ARRAY: array to retrieve
INDEX: index of array item to retrieve

strings set <string> to <string> copy text into the string variable
2 parameters:
STRING: string to modify
STRING: text to assign

set <string> to value <new value> copy the value as text into the string variable
2 parameters:
STRING: string
NEW VALUE: value to add

string <first> equals <second> determine if the two strings are equal
2 parameters:
FIRST: first text/string to compare
SECOND: second text/string to compare

lowercase <text> return the lowercase of the string
1 parameter:
TEXT: string to modify

uppercase <text> return the uppercase of the string
1 parameter:
TEXT: string to modify

capitalize <text> capitalize the string
1 parameter:
TEXT: string to modify

reverse <text> reverse the letters of the string
1 parameter:
TEXT: string to modify

make <count> copies of <text> return a number of copies of the string
2 parameters:
COUNT: number of copies to make
TEXT: string to modify

trim <text> trim the string
1 parameter:
TEXT: string to modify

pad <text> to length <length>
with <pad>

pad string with a string
3 parameters:
TEXT: string to modify
LENGTH: length to pad to
PAD: text/string to pad with

replace <replacee> with
<replacer> in <text>

replace text in a string with another text
3 parameters:
REPLACEE: old text
REPLACER: new text
TEXT: string to modify

join <new text> to <text> join one string onto another
2 parameters:
NEW TEXT: text/string to add
TEXT: string join to

put <item> split of <text to split>
into <result>

split text from a string and put a specified item into another string
3 parameters:
ITEM: item of split
TEXT TO SPLIT: text/string to split
RESULT: result string

join <new byte> to <text> join a byte to a string
2 parameters:
NEW BYTE: byte to add
TEXT: string join to

get character <text>(<index>) retrieve an indexed character
2 parameters:
TEXT: text/string from which to get a character
INDEX: index

copy substring from <text>
starting at <start> for <count> to
<output>

copy a substring from a string to another string
4 parameters:
TEXT: text/string from which to make substring
START: starting index
COUNT: characters to copy

OUTPUT: output string

copy string beginning with
<begin> in <text> starting at
<start> to <output>

copy a string that begins with a specified text to another string
4 parameters:
BEGIN: text/string to find
TEXT: text/string to search in
START: starting index
OUTPUT: output string

find index of string <string> in
<text> starting at <start>

find where a string matches
3 parameters:
STRING: string to find
TEXT: text/string to search
START: starting index

find first index of <character> in
<text> starting at <start>

find where a character matches
3 parameters:
CHARACTER: character to find
TEXT: text/string to search
START: starting index

find last index of character
<character> in <text> starting at
<start>

find the last occurance of a character
3 parameters:
CHARACTER: character to find
TEXT: text/string to search
START: starting index

length of <text> calculate the length of the string
1 parameter:
TEXT: text/string to count

convert <text> to a number in
base <base>

convert the numeric value in a string into an integer
2 parameters:
TEXT: text/string to search
BASE: use 10 to convert to decimal

interface general program info display info about variables, arrays and imports. Ctrl-click on imported files to
open them

value viewer display a table listing variables and their values

graph display a graph of variable values over time

logic levels display a graph of logic levels over time

pin activity display a representation of the chip with live IO pin logic levels

video display video from device

terminal terminal display a terminal for text input and output

send text <text> send text to the terminal
1 parameter:
TEXT: text to send

send value <value> send a value to the terminal
1 parameter:
VALUE: value to send

send <text> <value> send text and colored number to the terminal then clear end of line
2 parameters:
TEXT: text to send
VALUE: value to send

send <command> clear to endof line
1 parameter:
COMMAND: command to send

set position <x>,<y> set the terminal's position
2 parameters:
X: x position of cursor
Y: y position of cursor

set color <color> set terminal text color
1 parameter:
COLOR: color of text

receive text into <string> receive text from the terminal and store in a string
1 parameter:
STRING: string into which to store received text

receive number receive a number from the terminal

receive byte receive a byte from the terminal

received data test if the terminal has sent something

controls background display an image on which other interface blocks can be docked

textbox display and change a variable's value with a textbox

meter display a variable's value in a meter

switch display and change a variable's value as a switch

joystick use a joystick to control two variables

save save to file

advanced bird's eye view <sim> display a bird's eye view of a robot environment and simulate the robot's
movements
1 parameter:
SIM: world

simulator display a 3d view of a robot environment and simulate the robot's movements

swarm <config> swarm $
1 parameter:
CONFIG: swarm configuration

integrate with skype attach to the skype application to allow variable values to be changed and
monitored remotely

integrate with xmlrpc start a server that supports xmlrpc communication to change and monitor variable
values

integrate with ros start a ros node to support monitoring and changing variables using the robot
operation system

find fiducial marker <function> communicate with a fiducial image server to recognize where objects are with
vision
1 parameter:
FUNCTION:

functions <name> (<arguments>)
locals:<local variables>

group a set of blocks to a named function, you can specify arguments passed into
the function as well as local variables
3 parameters:
NAME: name for this function
ARGUMENTS: arguments passed to this function
LOCAL VARIABLES: names of variables that are only used in this function

return <return value> return a value from a function
1 parameter:
RETURN VALUE: value to return

synchronize functions
<synchronize>

create a set of blocks that will run functions at exact times
1 parameter:
SYNCHRONIZE:

at <time> do <task name>(<task
length>)

at a set time, run a named task
3 parameters:
TIME: time in msec
TASK NAME: task to run
TASK LENGTH: length of task

pins in count edges on pin <pin> for
<duration>

count the number of rising edges on a pin
2 parameters:
PIN: pin number to count edges on
DURATION: milliseconds during which edges are counted

measure frequency on pin <pin>
for <duration>

measure the frequency on a pin
2 parameters:
PIN: pin number to measure frequency on
DURATION: milliseconds during which frequency is measured

measure pulse on pin <pin> at
state <state>

measure the duration of a pulse on a pin
2 parameters:
PIN: pin number to measure pulse on
STATE: state of pin

measure pulse on pin <pin> at
state <state> with length <state>

measure the duration of a pulse on a pin
3 parameters:
PIN: pin number to measure pulse on
STATE: state of pin
STATE: maximum pulse length in usec

pin <pin> read the state of an IO pin
1 parameter:
PIN: pin on which state is measured

duration of discharge on pin
<pin>

measure the time until a pin's state changes
1 parameter:
PIN: pin which is tested

shift data in from pin <pin> mode
<mode>

shift in 8 bits of data using 3 pins
2 parameters:
PIN: pin on which data is shifted in, followed sequentially by the clock pin and
then the chip select pin
MODE: mode: 0 = MSBPRE 0 Data is msb-first; sample bits before clock pulse 1
= LSBPRE 1 Data is lsb-first; sample bits before clock pulse 2 = MSBPOST 2
Data is msb-first; sample bits after clock pulse 3 = LSBPOST 3 Data is lsb-first;
sample bits after clock pulse

serial in from pin <pin> mode:
(<baud>,<mode>,<bits>)

read data using the serial protocol
4 parameters:
PIN: pin from which data is received
BAUD: rate at which data is received
MODE: mode: 0=inverted(normally low) 1=non-inverted(normally high)
BITS: number of bits to receive

read i2c on pin <pin> and reply
with <ackbit>

read byte using i2c protocol and acknowledge
2 parameters:
PIN: pin to transmit on
ACKBIT: acknowledge bit

read <bytes> bytes from
<address> into <data>

read data from an i2c eeprom
3 parameters:
BYTES: bytes to write
ADDRESS: eeprom address
DATA: data array

read adc on pin <pin> sense the adc's value
1 parameter:
PIN: pin to measure

out output frequency <frequency> on
pin <pin>

continually output a frequency on a pin
2 parameters:
FREQUENCY: frequency to output in Hz
PIN: pin for output

output frequency <frequency> on
pin <pin> for <duration>

output a frequency on a pin for a duration
3 parameters:
FREQUENCY: frequency to output in Hz
PIN: pin for output
DURATION: milliseconds for output

set pin <pin> high set a pin high
1 parameter:
PIN: pin to set high

set pin <pin> low set a pin low
1 parameter:
PIN: pin to set low

toggle pin <pin> change a pin's state from high to low/low to high
1 parameter:
PIN: pin to change

configure pin <pin> as <mode> set a pin's mode
2 parameters:
PIN: pin to change
MODE: pin

output pulse length
<duration>uSec on pin <pin>

output a pulse
2 parameters:
DURATION: microseconds to output pulse
PIN: pin to output

output pwm <duty> on pin <pin> output a pulse width modulated signal
2 parameters:
DUTY: duty cycle, form 0 to 256
PIN: pin to output

output pwm <duty> on pin <pin>
for <duration>

output a pulse width modulated signal
3 parameters:
DUTY: duty cycle, form 0 to 256
PIN: pin to output
DURATION: milliseconds for output

shift out data <data> on pin <pin>
mode <mode>

shift data to a device
3 parameters:
DATA: value to shift out
PIN: pin to output to
MODE: mode

send serial data <data> on pin
<pin> mode:
(<baud>,<mode>,<bits>)

send data with the serial protocol
5 parameters:
DATA: value to transmit
PIN: pin to transmit on
BAUD: rate at which data is transmitted
MODE: mode: 0=inverted(normally low) 1=non-inverted(normally high)
BITS: bits to transmit

initialize i2c device on <pin> initialize the i2c device
1 parameter:
PIN: i2c scl pin

send start i2c token on <pin> send a start i2c token
1 parameter:
PIN: i2c scl pin

write i2c data <data> to pin <pin> write data with the i2c protocol
2 parameters:
DATA: value to transmit
PIN: pin to transmit on

send stop i2c token on <pin> send a stop i2c token
1 parameter:
PIN: i2c scl pin

write <bytes> bytes of <data> to write data to an i2c eeprom

<address> 3 parameters:
BYTES: bytes to write
DATA: data array
ADDRESS: eeprom address

share array: <arrays> share arrays with 12Blocks to upload/download data
1 parameter:
ARRAYS: type a quoted, commas separated list of array names

quickly sample the IO pins quickly sample the IO pins

analog out <duty> to pin <pin> output a pulse width modulated signal
2 parameters:
DUTY: duty cycle, from 0 to 256
PIN: pin to output

Chapter 7: Troubleshooting
If you're having trouble with your TBot, please ensure the following:

• 12Block is installed on computer- for help see "Installation Guide"
• USB cable is connected to computer and TBot
• TBot is charged and switch is set to “On”
• Write or load a program in 12Blocks with the Arduino.TBot library
• Run a program by pressing "Run" in 12Blocks- keep cable connected
• Turn TBot "off" after use, LED's should turn off.

Appendix A: Optional Parts
To complete the activities in this text, you will need a complete TBot robot.

For the latest information, downloads, and accessories, visit www.OneRobot.org

Aside from a PC with a serial or USB port and a few common household items, the TBot Robot Kit contain all the parts
and documentation you’ll need to complete the experiments in this text.

http://www.OneRobot.org/

	Learning with TBot
	Warranty
	14-Day Money Back Guarantee
	Copyrights And Trademarks
	Disclaimer Of Liability
	Errata
	Preface
	The Wonderful World of Robots
	Audience
	Support Forums
	Resources For Educators
	Educators Courses
	Copyright Permissions for Educational Use
	About The Author

	Chapter 1: Getting Started
	Step 1: Connect TBot to your PC with a USB cable
	Step 2: Install Software
	Step 3: Your First Program
	Hints and Tips

	Chapter 2: Simple Programs
	Basic Movement
	Navigation
	Square Dancing
	Music
	More Sample Programs:

	Chapter 3: Advanced Programs
	Multiprocessing

	Chapter 4: Sample Classwork
	Lab 1 - Introduction to TBot
	Lab 2 - Line Follower
	Lab 3 - Maze Solver

	Chapter 5: Challenges and Competitions
	Robot Floor Exercise
	Purpose
	Rules

	Line Following
	Objective
	Skills Tested

	Capture the Flag
	Overview
	Game Field
	Game Rules

	Hex Blitz
	Overview
	Game Field
	Game Rules
	Robot Modifications
	Other Notes

	Chapter 6: Technical Details
	Pin Connections to Arduino Nano
	Schematics
	Instruction Set

	Chapter 7: Troubleshooting
	Appendix A: Optional Parts

