
ViewPort v4
December 2010

Copyright © 2010 by HannoWare.com

ViewPort Manual

by Hanno Sander

 Table of Contents

 ForeWord ...2

3

..6Part I Welcome

..8Part II Introduction

... 9Overview 2.1

... 11Parallax Propeller 2.2

... 12Uses 2.3

... 13About HannoWare 2.4

..14Part III Getting Started

... 15Installation 3.1

... 16Load a Tutorial 3.2

... 17Interact with a Tutorial 3.3

... 18Views 3.4

... 19Advanced Views 3.5

... 20View IO Port Status 3.6

... 21View and Change Variables 3.7

... 22Connect/Disconnect 3.8

..23Part IV Integrating your Program with ViewPort

... 24Overview 4.1

... 25Integrate ViewPort into spin code 4.2

... 26Configure ViewPort Settings 4.3

... 27Source Code for Tutorial 1 4.4

..28Part V Reference (Windows Application)

... 29Menus 5.1

... 30Menus Part 2 5.2

... 31Folder Structure 5.3

... 32Tutorials 5.4

4

... 33Communication Protocol 5.5

... 34View Customization 5.6

... 35Data Widget 5.7

... 36Configuration Wizard 5.8

... 38Configuration Wizard Part 2 5.9

... 39Channel Types 5.10

... 40Graph Configuration 5.11

... 41Widget Development Kit 5.12

... 42DSO Widget 5.13

... 43LSA Widget 5.14

... 44Fuzzy Logic Control Panel Widget 5.15

... 45Fuzzy Logic Concepts 5.16

... 46Terminal 5.17

... 47Spectrum Analyzer Widget 5.18

... 48XY Widget 5.19

... 49Debugger 5.20

... 50OpenCV 5.21

..51Part VI Reference (Propeller Objects)

... 52Overview 6.1

... 53Conduit 6.2

... 54QuickSample 6.3

... 55Fuzzy Logic Engine 6.4

... 56PropCVFilter 6.5

... 57PropCVCapture 6.6

... 58Terminal 6.7

... 59Configuration Strings 6.8

... 60Configuration String Part 2 6.9

..61Part
VII

Problem Solving

..63Part
VIII

Glossary

5

..65Part IX How To Buy

Part I
Welcome

ViewPort

1.1 Welcome
ViewPort Development Studio
Welcome to ViewPort- real time graphing, debugging and more

What is ViewPort?
The ViewPortTM Development Studio combines a graphical application with software for the
popular microcontrollers to help you build advanced projects more quickly. Variables used in a
your programs are shared over a high speed serial connection with ViewPort to allow you to
control and monitor the program as it runs. This is known as SCADA (Supervisory Control And
Data Acquisition). Data can be graphed, measured, or logged. Various controls allow you to
change variables in your program as it's running. ViewPort can be integrated into any program -
in Propeller spin it requires one cog and a single line of code at the start of your program. It's
easy to get started with plenty of tutorials, videos and documentation. It is also configurable and
extensible so you can customize it to your needs.

How can ViewPort help me?
debug code with breakpoints or step line by line·
view and graph variable values over time to track your program's behavior·
view and graph microcontroller pin status to simplify interfacing with other hardware·
pc-based controller- control an embedded system from your desktop·
tuning and calibrating constants, for example tuning a PID controller·
take measurements with the DSO, LSA, Spectrum Analyzer, Data Logger·
SCADA prototype tool to integrate PC with real time data acquisition and control·
teaching tool for interfacing with hardware like sensors, motors...·
robot design platform to monitor internal robot state as you control it·
fuzzy logic engine and graphical editor·
video capture and vision processing with OpenCV·

Features:
High Speed connection to microcontroller memory·
Change and Monitor variables in your program as it runs·
Analyze data with Oscilloscope, Logic State Analyzer, Spectrum Analyzer modes·
View the state of the Input/Output port at up to 80MHz·
Create Custom Visualizations. Build your own controls with the Development Kit·
Integrate Fuzzy Logic into your program, with Graphical Tuning·
Capture Video, apply Vision Filters, View Video and Apply OpenCV filters·
Comprehensive Help Manual, Easy Install/Uninstall·
Comprehensive Terminal object support existing print style debugging.·
Get started Integrating with ViewPort with Documented, Full Source Tutorials·
Plugins include: Integrated Spin Code Debugger, OpenCV Engine·

Installation and Integration:
ViewPort is easy to install and the tutorials help you to get started quickly. Integrating ViewPort
into your own programs takes one line of code at the start of your program.

Links:
Home Page: http://hannoware.com
Blog: http://blog.hannoware.com
Forums: http://forums.hannoware.com
Parallax PE Lab Kit for ViewPort: http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/PE-Lab-ViewPortApps.zip

Copyright © 2007-2011 HannoWare
Propeller is a trademark of Parallax Inc
ViewPort is a trademark of HannoWare
All Rights Reserved
Manual Version 2.5, Supports ViewPort Version 4.5.x

Copyright © 2010 by HannoWare.com

Part I: Welcome7

Part II
Introduction

ViewPort

2.1 Overview
Background
ViewPort was first developed for the Parallax Propeller, a powerful microprocessor used in
embedded systems, robotics and advanced electronic projects. ViewPort uses one of the
Propeller microcontroller eight processors (cogs) to share data with a graphical application that
runs on a PC. This allows users to monitor and control the program running on the Propeller.
ViewPort now supports other microcontroller's as well

ViewPort Architecture

Architecture Walkthrough
The user's Program runs on the Propeller and has configured some data for sharing with
ViewPort. The Program may also register other objects, like the QuickSample object to take
quick readings of the IO port.

The Conduit object runs in a separate cog from the user's but has access to the shared variables
which are stored in Propeller main memory. It sends the shared data to the Windows host over
the serial connection. The conduit can also receive commands from the host to change variables
or control ViewPort objects.

Data received by the host is stored in a queue. When the queue is full the oldest measurement is
thrown out.

The ViewPort application includes multiple views to display data. Use these views to measure
and analyze the data using standard instruments. Data can be logged to different file formats,
uploaded to an ftp server, or passed to an external program. Views are defined by XML files
which define the layout and base configuration for ViewPort controls. Additional controls can be
programmed using the Developer's Kit.

Configuration information such as what variables to graph, time scale and bit labels can be
manipulated with the configuration wizard, saved and loaded from configuration files, set using
controls presented by the virtual instruments, or included in the user's program

Copyright © 2010 by HannoWare.com

Part II: Introduction9

2.2 Parallax Propeller
Parallax Propeller: 32 Bit, 80MHz, 8 cog Microprocessor
The Propeller chip makes it easy to rapidly develop embedded applications. Its 8 processors
(cogs) can operate simultaneously, either independently or cooperatively, sharing common
resources through a central hub. The developer has full control over how and when each cog is
employed; there is no compiler-driven or operating system-driven splitting of tasks among
multiple cogs. A shared system clock keeps each cog on the same time reference, allowing for
true deterministic timing and synchronization. Two programming languages are available: the
easy-to-learn high-level Spin, and Propeller Assembly which can execute at up to 160 MIPS (20
MIPS per cog).

Propeller Specification:
Processors: 8 32 bit processors running at up to 80MHz
Shared Global Resources: 32KB RAM, 32KB ROM, 32 IO Pins
Dedicated Resources Per Processor: 2KB RAM, 2 General Counters, Video Output
Power: 3.3volt DC, each pin can sink up to 40mA

Propeller Development Environment:
The Propeller Tool is a free Editor/Compiler/Loader. Compiled programs are loaded to the
Propeller over a serial connection.
A large community of users frequent the Parallax Forums: http://forums.parallax.com
The repository of source code object is known as the Object Exchange: http://obex.parallax.com
Information about the Parallax Propeller can be found here: http://www.parallax.com/propeller

Propeller Block Diagram

Courtesy of Parallax Inc.

Copyright © 2010 by HannoWare.com

ViewPort 10

2.3 Uses
Use Case Detail
Debugging Code Share variables with ViewPort and monitor how they

change over time in the DSO mode. Step through
spin code, set breakpoints, watch call stack and
profiler.

PC-based Controller Connect Propeller to a device and share the variable
controlling it's behavior. For example, use a ViewPort
dial to control a hobby servo's position.

Tuning and Calibrating Parameters Use a scroll bar in ViewPort to change the
parameters of a PID Control

Interface with other Hardware Use the LSA view to monitor timing signals when
working with I2C devices like a compass or eeprom

Take Measurements View and measure the signals from an ADC with the
DSO, Spectrum Analyzer, Data Logger and more.

SCADA Prototype Tool Control a remote system and log data for sharing
with other programs.

Teaching Tool Introduce operation of basic instrumentation such as
DSO, LSA etc.

Robot Design Platform View sensor values and control actuators with
ViewPort

Fuzzy Logic Platform Use the control panel to adjust fuzzy logic rules to
provide fuzzy logic control for your program.

Vision Platform Watch raw and vision-processed video from a
camera with ViewPort. Integrate with OpenCV library

Projects Ideas* Detail
Internet Weather station Add sensors to the Propeller: temperature, wind1.

direction and speed, camera...
Create a weather station view2.
Automatically upload screenshots to ftp server3.

Balancing Robot Build robot with tilt sensor and wheel encoder1.
Tune the control algorithm2.

Digital Oscilloscope/Spectrum Analyzer Add an ADC to the Propeller to measure analog values1.
View signal in DSO/Analog views2.

Function Generator Add a DAC to the Propeller to generate analog values1.
Assign controls to control the waveform: pwm, sine,2.
square...

Measure sensors Gyro, accelerometer, Ping, IR , wheel encoder, compass,
GPS, temperature .

Control actuators Solenoid, Hobby Servo, motors, stepper motor, H-bridge

Study Control Theory Bode plot, step response, PID, fuzzy logic, state space,
Kalman-filter, Signal process DSP, filter, sample, FFT

Image Processing TV, camera, NTSC, Image process, Pixel manipulation,
blob finder, contour

Process Control Measure temperature and pH while fermenting beer
Pick and Place Tune software to use vision to recognize objects then move

them

*For additional ideas visit our site: http://hannoware.com/viewport/applications.php to see how people use
ViewPort.

Copyright © 2010 by HannoWare.com

Part II: Introduction11

2.4 About HannoWare
The people behind HannoWare believe in building sophisticated, yet affordable products by
pushing off the shelf components to their limits. We aim to understand the components we use
through detailed measurements and analysis- then we engineer the optimal solution.

Thus far, we have developed:
ViewPort-The Premier Debugging Environment for the Propeller·
12Blocks-Drag blocks together to quickly build programs·
PropScope-USB Oscilloscope, Function Generator, Logic Analyzer·
TBot-Sophisticated wireless robot·
DanceBot-Vision Guided Balancing Robot·
Parallax Propeller Book- Programming & Customizing the Multicore Propeller Microcontroller:·
Official Guide

Links:
Home Page: http://hannoware.com
Blog: http://blog.hannoware.com
Forums: http://forums.hannoware.com
Parallax Propeller: http://parallax.com/propeller

Copyright © 2010 by HannoWare.com

ViewPort 12

Part III
Getting Started

ViewPort

3.1 Installation
Requirements:
PC host system:

>500MHz CPU with 5MB HDD Space, 500MB RAM, Mouse·
Windows 95,98,2k,XP,Vista, Win7·
USB 2.0 connection with standard USB cable (preferred) or serial to Propeller·
Parallax Propeller Tool software installed with USB-serial driver installed·

Parallax Propeller target
Parallax propeller chip with power supply·
5MHz crystal·
EEPROM, LEDs, video input are optional·
The Parallax ProtoBoard is a low-cost, high-quality solution for Propeller projects·

BasicStamp2 target
Parallax BS2 microcontroller, like the BS2-IC module·

Users should be familiar with their microcontroller. Familiarity with technical instruments like
digital storage oscilloscope (DSO) and logic state analyzer (LSA) is a bonus but not required.

Installation:
Download ViewPort and follow the installation wizard to install it. If you're upgrading, the installer
will replace old ViewPort files with the updated versions. Before starting ViewPort, make sure a
microcontroller is connected to your computer- ideally with a USB connection. USB allows for
faster connection up to 2Mbps.

Uninstall:
To uninstall, select the uninstall item from the Windows Start menu.
Video Tutorials:
The video tutorials show ViewPort in action- view them here:
http://hannoware.com/viewport/videos.php
Problems:
If you encounter problems, check the Problem Solving guide or contact us: http://hannoware.com

Copyright © 2010 by HannoWare.com

ViewPort 14

3.2 Load a Tutorial
Pre-requisites:

ViewPort should be installed·
Propeller turned on and connected to this PC·

Load Tutorial #1
ViewPort starts with the "code" view. You'll use this view to manage files and edit your code.
The file browser remembers which directories you've used- it starts out with the tutorial folder
which contains programs that were designed to demonstrate the capabilities of ViewPort- we
suggest you work through them in order. An overview of all tutorials and source code for the first
one are in the Reference section.

Start by selecting the tutorial you wish to work with- in our case, "01_Four Bit Counter.spin", a
program that exercises the Parallax Propeller's IO pins. This first tutorial demonstrates how you
can use ViewPort to analyze activity on the Propeller's pins using the Logic State Analyzer. You
can read and change the file in the large edit area. Use the "Port" chooser to specify which port
to use- or leave it in "Auto" mode. Make sure a Propeller is connected to your PC then load the
tutorial to the Propeller by clicking "Run".

Copyright © 2010 by HannoWare.com

Part III: Getting Started15

3.3 Interact with a Tutorial
ViewPort will load the tutorial's spin code to the Propeller and establish a connection with the
program running on the Propeller. The tutorials' spin code includes an optional configuration
section that makes ViewPort switch to the LSA view showing 6 traces

The program continually increments a variable counter and outputs the counter value to the pins
of the Propeller. The first 4 traces show the pins being toggled by the counter- they're counting in
binary. You can adjust the speed of the counter by turning the dial in the edit section. You can
change the timescale by turning the timescale dial and you can trigger on a different trace by
clicking on its label. The last 2 traces represent the data being transmitted and received over the
serial connection. Click the top right "Connect" button to stop/run the connection.
Click on the "code" view to edit/run other tutorials.

Copyright © 2010 by HannoWare.com

ViewPort 16

3.4 Views
ViewPort uses Views to Organize Your Screen
You've already seen two views, "code" to view/edit code and "lsa" to graph the Propeller's I/O pin
states. When you loaded the "Bit Counter" tutorial, ViewPort switched to the "lsa" view because
the configuration of the program specified to use that view. The configuration also specified how
to graph the data- what labels to use, what to trigger on, and even the timescale. Specifying the
configuration in your program gets you going quickly. Later on you'll learn how to use the
graphical wizard to create configuration codes for your own programs- for now, explore the other
views and then return to the "code" view. Here's a brief summary of the most commonly used
views.

Digital Storage Oscilloscope (DSO)
graphs data on an oscilloscope and
provides controls for measuring and
triggering on the data.

Use to monitor how variables change over
time.

Shown in graph is the result of tutorial #2:
Track a Spin Variable. The blue trace's
frequency can be changed with the dial.

Logic State Analyzer (LSA)
graphs the individual bits making up a
variable.

Use to view the state of the IO port and
communication with other devices

Shown in the graph is the result of tutorial
#1: Four Bit Counter. The traces show the
state of the Propeller's IO pins- which are
toggled with an incrementing variable.

Copyright © 2010 by HannoWare.com

Part III: Getting Started17

3.5 Advanced Views
These advanced views combine multiple graph elements in one view. For example, the "Mixed"
view displays the DSO graph and the LSA graph together. Typically, you'll start by setting the
configuration (time scale, triggers, resolution) in the pure views and then switch to an advanced
view to analyze your data all in one view. All changes you make in a view will carry across to
other views.

ANALOG
Graphs data on an oscilloscope, in an xy
graph, and in a spectrum analyzer.

Use to examine analog waveforms.

Shown in graph is the result of Tutorial #13:
Amplitude Modulation. The blue signal is
composed of a carrier signal onto which
another frequency is modulated. The
Spectrum Analysis shows the carrier signal
with sidebands.

MIXED
Graphs data on an oscilloscope and shows
the status of the IO port graphically and in a
logic state analyzer.

Use to analyze both digital and analog
waveforms at the same screen.

Shown is a sawtooth pattern in the DSO
and a binary counter in the LSA.

VIDEO
shows video being streamed from the
Propeller- typically the output of vision
processing applied to digitized video.

Use to tune vision algorithms, or just to
watch the output of a camera

Shown is tutorial #11: Vision Demo showing
the image of a toy airplane.

FUZZY LOGIC:
provides a control panel to tune the
parameters of a program's fuzzy logic
engine.

Use to tune a fuzzy logic engine.

Shown is tutorial # 6: Fuzzy Lunar Lander
showing the controls required to land on the
moon with fuzzy logic.

Copyright © 2010 by HannoWare.com

ViewPort 18

3.6 View IO Port Status
Some tutorials share a variable called "IO". This variable reflects the state of the microcontroller's
IO pins. Tracking this variable helps you understand which pins are "high" or "low". To
communicate with other devices, pins are set "high" or "low" at specific times- being able to
monitor the IO port helps you troubleshoot communication problem. Typically the LSA graph is
used to view the individual bits that make up the "IO" variable- each bit corresponds to an IO pin.
Your configuration can label and group the bits to simplify the graph.

Streaming As Variable
When the Conduit sends data from the Propeller to the PC it streams one variable after another.
At 2Mbps, the Conduit can send 50K longs to the PC every second. This allows ViewPort to
store 50,000 32bit measurements per second- good for graphing a single variable that changes at
up to 25KHz (Shannon's law) With more variables, this maximum rate decreases. When you
"share variables" with ViewPort, they are streamed- this allows you to look at a variable's value
anywhere in time with good time resolution.

Sample with QuickSample
To support faster IO transitions, ViewPort can use a technique called "sampling". Sampling
allows you to look at IO transitions that happen very quickly- up to 80MHz. Sampling works by
taking multiple samples in rapid succession, storing them in Propeller memory "frame", and then
transmitting all measurements. To use sampling in your program, just register the QuickSample
object. Sampling provides a high sample rate for the IO port, but it will decrease the sampling
speed of other variables in your program.

Copyright © 2010 by HannoWare.com

Part III: Getting Started19

3.7 View and Change Variables
ViewPort displays the current value of variables in your live program in the ViewPort section of
the view. This section also lets you control if a variable should graphed in the active graph or
edited with a control. You can click on a variable's name to change the configuration of that
variable.

ViewPort constantly transfer data from the microcontroller's memory to the PC. This allows
ViewPort to graph and show you the value of "shared" variables. When you "edit" a variable,
ViewPort sends a command to the Propeller which sets the variable to the new value.

The following diagram shows how ViewPort is used to view and change variables in a motor
control program. The user's program shares global memory from rpm to kp. The conduit sends
the variable's values to ViewPort for display. When the user changes the Kp variable from 5 to 8,
that command is send to the conduit which changes the variables value in global memory.

Copyright © 2010 by HannoWare.com

ViewPort 20

3.8 Connect/Disconnect
The Connect button let you start or stop the connection with the Propeller. You can still view,
manipulate, and save data, but no new data will be captured while the connection is stopped.

Every time you start a connection with the Propeller, ViewPort will query the program's
configuration. If the program's configuration has changed (because you loaded a new program),
then ViewPort will use that new configuration to it receives from the Propeller to configure itself.
Configuration can also be saved and loaded as files or included in a program.

Auto-Connect/Auto-Disconnect
Only one Program on your PC can use the COM/USB port that connects the PC to the Propeller
chip. Typically you'll want to use the Propeller Tool to develop new programs and use ViewPort
to debug them. Auto-Connect/Disconnect makes this easy by stopping the connection when the
ViewPort Window is no longer active (like when you select the Propeller Tool window). The
connection will restart when the window becomes active again (when you click on the ViewPort
window). You can disable this behavior under "Edit/Preferences".

Copyright © 2010 by HannoWare.com

Part III: Getting Started21

Part IV
Integrating your

Program with
ViewPort

ViewPort

4.1 Overview
Integrating a Propeller Spin program with ViewPort takes 3 Steps:
1) Open your program with ViewPort inside the "code" view. Your Program should:

· compile and run without problems,
· use the standard clock setting to run the Propeller at full speed- ie 80MHz
· have at least 1 cog available for ViewPort,

2) Integrate using ViewPort Objects
· Start by including the ViewPort conduit object in the OBJ section of your main

program like this:

OBJ
 vp : "Conduit"

- Next, declare the variable for your program.

VAR
 long a,b,c,d,e

- Finally, at the beginning of your main program call the conduit object's share
method and pass it the address of the first and last variable in memory you want
to share with ViewPort.

PUB MAIN
 vp.share(@b,@d)

In this case, vp.share(@b,@d) shares 3 variables, b, c and d with ViewPort.
Each packet will contain 3 longs- equal to 12 bytes. Notice that you can only
share global "long" variables.

- Optionally, add other ViewPort objects or configuration code BEFORE the
vp.share command. Click on an object for additional information:

o QuickSample: uses 1 to 4 cogs to sample the IO port at any speed up to
80Msps.

o Fuzzy: provides spin routines that add a fuzzy logic engine to your
program to simplify control problems.

o PropCVCapture: uses 1 cog to capture video into memory for
processing or streaming to ViewPort.

o PropCVFilter: uses 1 cog to continuously apply vision filters to captured
video.

o Terminal: use instead of Conduit when you need a serial terminal.

 · Save your program before loading it to the Propeller.

3) Load your program to Propeller RAM (F4 key), or EEPROM (F3 key)

ViewPort will compile your program and link it with objects stored in either the
ViewPort library "/viewport/lib" or the Propeller library. It will then find and load your
Propeller, establish a connection with the conduit, switch to the specified view, and
display data for the variables being shared. At this point you can interact with the
view to "plot" variable values, change timescale, etc. You can also use the
Configuration Wizard (F2 key) to edit the configuration data.

Copyright © 2010 by HannoWare.com

Part IV: Integrating your Program with ViewPort23

4.2 Integrate ViewPort into spin code
This is a an example where we start with a simple counting program and walk through the steps
discussed on the previous page.

Here is a simple Spin program that counts from 0 to b using variable a:
CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
OBJ
VAR

long a,b
PUB count

b:=1000
repeat

a++
if a>b

a~

The program uses the standard 80MHz clock, includes no objects, and stores a and b in global
memory. The program can easily be modified so that you can use ViewPort to monitor and adjust
variable values.

Integrate ViewPort into the Program
Add the lines:

vp:"Conduit"

and
vp.share(@a,@b)

so your program reads:

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
OBJ

vp:"Conduit"
VAR

long a,b
PUB count

vp.share(@a,@b)
b:=1000
repeat

a++
if a>b

a~

Save the file then load to Propeller RAM using the F4 key.
ViewPort should connect to your Program and graph 2 variables in the DSO mode. Learn how to
configure ViewPort in the next step

Copyright © 2010 by HannoWare.com

ViewPort 24

4.3 Configure ViewPort Settings
In the previous step we've edited and loaded a simple program to the Propeller. Since ViewPort
was not provided with any configuration, it starting in the default view (DSO), has assigned
default names to the variables (v1 and v2), and has not started graphing any data. The following
pictures illustrate the result of configuring ViewPort:

Let's first change the time
scale of the graph- by turning
the time scale dial from 1
sec/div to 10ms/div.

Next, find the "ViewPort"
section in the view.
Click the "Name" column for
each variable to open the
configuration wizard. For now,
change just the name of the
variables to "a" and "b".
Next, click on the radio button
in the "edit" column for variable
"b" to bring up a textbox
control. Finally, click the "plot"
button to graph the data.

For the last step, set a
"Trigger" to stabilize the
graphical display of the signal.
Click on the "Trigger" tab and
set the "Mode" to
"Continuous". Now, the graph
should be stable because the
trigger will continuously look
for a rising edge on ch1- with
an automatic level.

ViewPort's configuration is global across all views. This means you can configure a time scale or
name in one view and use it in another.
Configuration data can be saved and loaded from configuration files using the Configuration
menu. This allows you to quickly set up your instruments.
You can use the "Copy to Clipboard" item in the "Configuration" menu to copy and paste the
configuration before the vp.share command in your program. This allows your Program to set up
ViewPort. Here is the configuration string for this program:
vp.config(string("var:a,b"))
vp.config(string("start:dso"))
vp.config(string("dso:view=[a,b],trigger=a>auto,timescale=10ms"))
vp.config(string("edit:b(mode=text)"))
vp.config(string("lsa:timescale=10ms"))
The commands should make some sense when we read them. For now, we can use ViewPort's
graphical configuration wizard and instrument dials to create our configuration and then
copy/paste it into our program. With time, we'll learn how to copy/paste configuration from other
programs, or type the configuration into our program directly.

Copyright © 2010 by HannoWare.com

Part IV: Integrating your Program with ViewPort25

4.4 Source Code for Tutorial 1
 {***
* (C) 2010 HannoWare.com, Inc. *
* Analyze a four bit counter *
* AppletImage=scope.gif *
**
Shows how you can analyze activity on the
Propeller's pins using the Logic State Analyzer.
To use this Program with ViewPort, compile and load it into your Propeller's
RAM
with the F10 key. Then start ViewPort and press the "Connect" button.
When ViewPort connects to this program, it will display a logic
analyzer view showing 6 traces. The program
continually increments a counter and outputs the counter value to the
pins of the Propeller. The first 4 traces show the pins being toggled
by the counter- they're counting in binary.
You can vary the speed of the counter by turning the dial in the edit section.
You can change the timescale by turning the timescale dial and you can trigger
on a different trace by clicking on its label. The last 2 traces represent
the
data being transmitted and received over the serial connection.}
CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000 'use standard 5MHz clock
OBJ 'include 2 ViewPort objects:
 vp : "Conduit" 'transfers data to/from PC
 qs : "QuickSample" 'samples INA continuously in 1 cog- up to 20Msps
VAR
 long cntr ' 'binary counter
 long nextCycle 'time for next increment
 long freq 'counter frequency- edited with ViewPort
dial
 long frame[400] 'stores measurements of INA port
pub demo
 vp.register(qs.sampleINA(@frame,1)) 'sample INA into <frame> array
 optional_configure_viewport 'optionally configure viewport's interface
 vp.share(@freq,@freq) 'share the <freq> variable
 dira[16..19]~~ 'output pulses on pins 16..19
 nextCycle:=cnt+clkfreq 'initialize first cycle time
 repeat
 outa[19..16]:=(cntr+=1) 'count in binary on pins 19..16
 nextCycle+=((clkfreq/freq)#> 6000 <#clkfreq/10)
 waitcnt(nextCycle) 'wait until next cycle- controlled by
<freq> variable
pub optional_configure_viewport
vp.config(string("var:io(bits=[cntr[16..19],30tx,31rx]),freq(unit=kHz,f=x/1000
,min=1,max=10)"))
 'the io frame is filled by the sampleINA, we're only interested in specific
 'bits which we name: 16..19 make up the cntr, 30 is tx and 31 is rx
 'share the freq variable. it has a unit of Hz with range from 1 to 10
 vp.config(string("lsa:view=io,timescale=1ms,trigger=io[18]r"))
 'configure the lsa graph to display the io variable with 1ms timescale
 'and trigger set on bit 18 rising
 vp.config(string("edit:freq(default=5,mode=[dial,text,scroll])"))
 'configure the edit section to display a dial and text for the freq variable
 vp.config(string("start:lsa"))
 'start in lsa mode

Copyright © 2010 by HannoWare.com

ViewPort 26

Part V
Reference
(Windows

Application)

ViewPort

5.1 Menus
File

New: creates a new file·
Open: opens a file·
Save/Save As: saves a file·
Configuration: opens the configuration wizard·
Export Visible Data: saves data being viewed in the active graph and ViewPort·
configuration to a csv, txt, jpg, png or matlab file.
Export All Data: saves all data and ViewPort configuration to a csv, txt, or matlab files.·
Close: closes a spin file in "code" view or a "view".·
Stream:periodically saves data to disk in a specified format, executes a specified·
program, and/or uploads the file to an ftp server.
Restart: clears data·
Exit: closes program.·

Edit
Undo, Cut, Copy, Paste performs operation on text·
Program Preferences·

Disconnect while Window is Inactive: If selected, will disconnect when the window·
is not active. This happens when you Alt-Tab to another application, minimize the
window, or click on another application. When the window is activated again,
ViewPort will reconnect.
Baud Rate:Set rate at which ViewPort communicates with your program. ViewPort's·
default baud rate is 1MBaud- equivalent to 1 million bits/second or roughly 100,000
bytes/second. This allows ViewPort to quickly transfer data back to support high
sampling rates as well as streaming video. Under ideal conditions, you can increase
the baud rate to 2MBaud- but we recommend you stay with the default. ViewPort lite
is restricted to a slower rate of 115kbps.
Display Hints: If checked, ViewPort will display tooltips when you hover over a·
control.
Buffer Size: ViewPort reads data from the microcontroller and stores it for analysis in·
a rolling buffer. You can set that size here, smaller to use less memory, larger to
allow more data to be analyzed over longer periods.
Auto Scale Interval: Change the interval at which ViewPort autoscales your data·
here
Video Settings: Tune the brightness, contrast and gamma here for streaming video.·
File Granularity: When saving "All Data", this setting is used to skip samples to·
reduce file size.
C compiler: Location and information to help ViewPort compile C files·
Folder Manager: ViewPort remembers which folders you've used for storing·
programs. Manage them here.

Copy Screenshot: copies a screenshot of the view to the windows clipboard, you can·
paste it into MS Word and some Email programs to share your work.
mark like modifications, outlining, bookmarks, macros, find/replace, goto: use·
these, and more to edit your code

View
Full Screen: switches to full screen mode- taking over the entire monitor. Great for·
projection for a class. Press "Esc" to return.
Designer Mode: Toggle edit mode on and off·

Copyright © 2010 by HannoWare.com

ViewPort 28

5.2 Menus Part 2

Plugins
Add: visits the http://hannoware.com/viewport/plugins website to download and install·
additional capabilities.
Manage: get information about particular plugins or uninstall them·
List of Installed Plugins: shows information for installed plugins·

Run
Identify/Reset Hardware: searches the active port for your hardware and resets it·
Compile: compiles your program·
Load RAM: compiles program, loads to your hardware to RAM and starts the connection·
Load EEPROM: compiles program, loads to your hardware's EEPROM and starts the·
connection
Connect: connect to your hardware to monitor/change variables·
Disconnect: disconnects from your hardware to release the communication port and·
freeze the data

Debug
Start Debugging: Loads the debug enabled program and starts the debugging session·
Pause: Pauses the active cog and shows the current line·
Stop: Stops the debugger and connection·
Step Into: Steps one instruction further·
Step Over: Step one instruction/function call further·
Step Out: Step out of current function·

Help
Help Index: opens the search and browseable Help file.·
PDF Manual: links to the pdf manual available at:·
http://mydancebot.com/viewport/manual.pdf, suitable for printing
Check for Updates: Visits the myDanceBot website to check for an update·
Register: Displays Registration screen·
About: Displays information window·

Editor Toolbar

Run: compiles program, loads to your hardware to RAM and starts the connection·
Debug: compiles program with debug information, loads to your hardware to RAM and·
starts the connection in debug mode
Pause: Pauses the active cog and shows the current line·
Stop: Stops the debugger and connection·
Step Into: Steps one instruction further·
Step Over: Step one instruction/function call further·
Step Out: Step out of current function·
Save: Saves file·
Bookmark: creates/removes a bookmark at the current locaiton·
Previous/Next Bookmark: moves cursor to previous/next bookmark·
Port: Select which COM port to use. Defaults to "Auto"- to automatically find your·
hardware. Once found, it'll stay in Auto mode, but indicate the current port used, by
displaying something like "COM6*". This indicates it's currently using COM6, but is still in
AUTO mode, so when you remove your hardware from COM6, it'll search all ports again.
You can also select a fixed COM port to only use that port.

Copyright © 2010 by HannoWare.com

Part V: Reference (Windows Application)29

5.3 Folder Structure
The ViewPort installer checks for a valid .net Framework installation, presents the license
agreement and installs files as follows:

Program Files/ViewPort Directory
ViewPort.exe

core application
Readme.txt

contains information about the release
unins000.dat,unins00.exe

uninstall files
.tpl

template files used when you create a new file
/lib

ViewPort stores library files included by your program here (conduit.spin...)
/Plugins

.chm: Information about a plugin

.vpc: Install/Uninstall information about a plugin
/View

.xml files: layout data for each view
hierarch of image files: files used by views

My Documents/ViewPort
/Tutorials

.spin .c .bs2 sample ViewPort files

Copyright © 2010 by HannoWare.com

ViewPort 30

5.4 Tutorials
The following tutorials are included with ViewPort. They're designed to help you understand how
to use ViewPort with your own projects. Here's a brief overview of each:
Debug Learn how to use the Spin Debugger with this sample. Step through the

code, set breakpoints and watch variables. Start by clicking the "code"
tab and reading the comments.

Four Bit Counter When ViewPort connects to this program, it will display a logic
analyzer view showing 6 traces. 4 count in binary while the bottom two
show the status of teh serial connection. Vary the speed of the counter
with the bottom right dial or change the trigger or timescale.

Track a Spin
Variable

Displays a sawtooth signal in the oscilloscope view. This signal
represents the value of a variable in the spin program. Manipulate the
trigger, time scale and measure the signal with the cursors.

RS232 The program sends two bytes using RS232. The first byte's value slowly
increases. You can control the second with a textbox control in ViewPort.
The "mixed" view shows both the logic traces and the values being sent.

High Frequency This program uses one of the two hardware counters per cog to generate
a square wave with a configurable frequency from 1 to 40MHz-
controllable through a ViewPort dial. The waveform is displayed in the
"analog" view- showing the signal and its spectrum analysis.

Simulated
Weather Station

Displays simulated weather measurements in a custom view with custom
controls.

Fuzzy Logic Lunar
Lander

This applet simulates Height, Speed, and Throttle for two landers-one
under your control, the other controlled by Fuzzy Logic. See
if you can beat the Propeller!

External Signal-
Binary Counter

This program shows how you can use ViewPort's oscilloscope and logic
analyzer modes to analyze a signal from an external integrated circuit-
the MC14029 (binary counter), available on Digikey for $.65

Measure Distance The Parallax PING ultrasonic sensor is a great tool to measure distance
up to 3m. This program uses ViewPort's oscilloscope to graph the
sensor's value over time. You can also use the Logic Analyzer view to
time how long it takes for the echo to return to the sensor.

Measure Fast
Analog Voltage

An Analog to Digital converter is used to convert an analog value to
digital. This program uses the QuickSample object to quickly sample the
the outputs of an external high-speed ADC. ViewPort can decode the
binary representation of the analog signal and graph it as an analog
value. An interesting pattern to look at is an NTSC TV signal.

Video Tracker This program uses the VideoCapture object in 1 cog to capture video
signals and display a video stream within ViewPort. Another cog uses
simple vision processing to find a bright spot and highlight it in ViewPort.

Vision Demo This program shows how to use the Vision object to apply simple
algorithms to captured Video. A spin program specifies the algorithms to
run inside the Vision engine.

Measure
Capacitance

Use this Program to measure the capacitance of a capacitor using a
simple RC circuit.

Spectrum of 2
Signals

Analyze a composite signal with the spectrum analyzer to determine the
frequencies of the source signals.

Terminal Demo of the terminal replacement object.
OpenCV Advanced vision processing with the OpenCV library
Lissajous Uses the XY view to plot two signals which result in Lissajous figures.
DDE Sample Shares arrays and variables for use with DDE clients
Debug Pin Toggle Toggles pins with a variable- useful for learning how to use the debugger.
Manchester Generate and decode Manchester encoded signals.
First C program C program will blink the LED's on a Propeller DemoBoard.
BS2 Blink BS2 program to blink LED's with a BS2

Copyright © 2010 by HannoWare.com

Part V: Reference (Windows Application)31

5.5 Communication Protocol
Receiving Data
The Conduit object continually sends packets marked by out-of-band markers at the set baud
rate. ViewPort discards any packets where the markers are out of alignment.

Sending Data and Commands
ViewPort sends data and commands to the conduit. The conduit times the start bit to set its baud
rate.

Reading Configuration
ViewPort sends a READCFG command to the conduit which returns configuration string and
length of memories being shared. ViewPort then parses the configuration data to initialize the
ViewPort view

Loading Firmware
ViewPort opens the selected Port (defaults to Auto which will try all COM ports) and tries to
identify your hardware. It issues a RESET and proceeds to load the compiled program.

Detecting the Propeller
ViewPort issues a RESET and issues a VERSION command to the microcontroller. A valid
response indicates the Propeller/BS2 is on that port.

Copyright © 2010 by HannoWare.com

ViewPort 32

5.6 View Customization
Each ViewPort view is specified by a separate xml file. The file specifies the layout, graphical
attributes and behavior of a collection of widgets. ViewPort ships with many widgets (switches,
scrollers, dials, dso, lsa) but you can also develop your own using the Widget Development Kit-
available at: http://hannoware.com/viewport/plugins. You can right click on widget's to set some
of their properties, edit the xml file by hand, or use the ViewPort Designer to customize views.

To visually edit a View, turn on the designer mode from the "Designer" menu. In the "Designer"
mode, the left column shows the properties of the currently selected widget and a library of
widgets. Double click a widget to add it to your view. Change a widget's properties by clicking on
the value column and selecting a new value. Once a widget is selected it will be framed with a
blue rectangle. Drag the red top bar to move the widget. Drag the green square to resize the
widget. Drag the blue numbered squares to configure the widget.

You must purchase a license that supports Designer to save your changes.

Copyright © 2010 by HannoWare.com

Part V: Reference (Windows Application)33

5.7 Data Widget
The Data Widget includes:

Data Overview·
The most recent value and measurements
from the active graph are shown for each
shared value. The Plot and Edit columns
allow you to quickly plot the variable in the
active graph and/or edit the variable. Click
on the variable name to start the
configuration wizard. The configuration
wizard (described in next section) allows
you to change properties for a variable- like
its display name, its unit and more.
Cursor Measurements·
Click the "show" column to turn a cursor
on/off. The measurements are shown in
the A,B, and Difference columns
Edit Controls·
Controls like textboxes, dials, and
scrollbars let you change a variable's value
from this section.

Copyright © 2010 by HannoWare.com

ViewPort 34

5.8 Configuration Wizard
ViewPort uses configuration strings to define how data channels from the Propeller are displayed.
For example, a channel's name, controls, and graphic properties are all defined by configuration
strings. You can include the configuration strings in your spin program to set up ViewPort the
way you like. The configuration wizard helps beginners create and understand these strings.
Start by watching how the strings change as you try out the tutorials. Then, connect to your own
program (remember to include vp.share) and use the wizard to assign names and other
properties to your shared channels. Once everything is set up in ViewPort, copy the strings into
your program.

The channels section shows the channels you shared with ViewPort. You can add/delete control
and decode channels to this list. The tabs to the right are specific to the selected channel.
Display Tab

Name:the name to display for that channel·
Unit:Suffix for the channel's value·
Formula: Values from Propeller represent measurements of things that have units.·
Temperature in 'C, Voltage, distance in cm. The propeller sends all values as integers. To
convert to a unit, a scaling factor and offset is applied. The formula must look like this:
scale*x+offset or this: scale/x+offset, where scale and offset are real numbers. Examples:
10.2*x+5.2, 10.2/x+5.2
Besides floating numbers, you can also use other channel names to scale/offset the variable.
AC/DC mode: In AC mode, a variable's value is first low-pass filtered to remove the DC·
offset. Use AC mode if you're monitoring high frequency values and you don't care about the
low frequency offset.
Formula: display value in base 10 (decimal), engineering notation, 16 (hexadecimal),·
2(binary) as a string, or as a float.

Copyright © 2010 by HannoWare.com

Part V: Reference (Windows Application)35

5.9 Configuration Wizard Part 2
Graph

Show in Graph: toggle to·
include/remove from active
graph.
Scale: resolution/division in·
units.
Offset: units for bottom of·
graph.

Edit
List of Controls: choose·
which controls to use for
editing the variable.
Min: sets the minimum value·
sent by scrollbar and dial
knob.
Max: sets the maximum·
value sent by scrollbar and
dial knob.
Labels: labels assigned to·
controls-only used with the
"slider" control.
Input: the value shown on·
this control can be from a
different channel

Bit Names
Table of Bits and Names:·
label individual bits for
display in the LSA widget
Table of Groups and Bits:·
label groups of bits for
display in the LSA widget

Decode from Other Variable
This tab only applies to·
"decode channels". Click on
"Add Decode Channel" to
add one.
Source Variable: decode·
value from this source
variable
Bit Start: this bit will be the·
lsb
Bit End: this bit will be the·
msb

The configuration strings are continually updated in the "Configuration Source Code" panel. You
can revert to the original configuration provided at the last connect, load/save configurations, and
copy the strings to the clipboard to paste into your source code.

Copyright © 2010 by HannoWare.com

ViewPort 36

5.10 Channel Types
Besides interacting with data that map directly to variables shared in a Propeller program,
ViewPort also supports frame, control decode and array channels.

A Variable Channel is created when you share a variable. You can graph this data and·
edit the variable's value. Sharing more variables will decrease the effective sampling rate
of the streamed data.
A Frame Channel is created when you register the QuickSample. Doing so will allow you·
to sample the IO port at fast rates, but slow the sampling rate of the other streamed
variables channels. You can't edit the frame channel.
A Decode Channel is used when the value you want to display is "embedded" in another·
value. For example, when you read a binary counters value with pin 10-17 of the Propeller,
the counter's value is embedded in bits 10-17 of the INA variable. A Decode Channel gets
its values by decoding a source channel with set parameters- in our case- masking out bits
10-17 and shifting right by 10. Since it's value is computed on the fly within ViewPort, it
does not affect the sampling rate and you can't edit this channel.
A Control Channel is used when you need to change variables in Propeller memory but·
don't need to stream them back to the PC- ie parameters as opposed to sensor readings.
The variables edited by control channels start with the one after the last shared variable.
For example, if you allocate these variables:

main |a,b,c,d
and share just a and b with this statement

vp.share(@a,@b)
then the first control channel will map to variable c, and the second to variable d
Arrays can be shared using the vp.array(@array,arraylength,arraytype) The first element·
of the array can be graphed inside of ViewPort. The full array is accessible through DDE.
The arraytype should be a unique number starting with 5.

Copyright © 2010 by HannoWare.com

Part V: Reference (Windows Application)37

5.11 Graph Configuration
Each graph maintains this information:

Variables being viewed: the list of variables to be plotted by this graph. For each variable·
you can specify its scale, offset and coupling.

Time scale: the horizontal resolution of the graph.·

Time offset: when triggered, this represents the offset from the trigger point. When data is·
sampled, this offset is from the start of the sample. When in realtime mode, the graph label
shows the date and time. In normal mode, the offset is relative to the most recent sample-
which is taken at time 0.

Trigger: You can configure each trigger separately- there are 4 modes:·

Bit Mode: Select R/F for rising/falling edge, then select the bit·

Pattern Mode: Use this mode to trigger on multiple bits. Enter a string of characters- 1·
for each bit. The right most character corresponds to the least significant bit. 0=low,
1=high, r=rising, f=falling, x=don't care

Value Mode: Use this mode to trigger on a rising/falling decimal value. Set a value and·
choose to trigger on rise/falling edge

Expression Mode: Use this mode to trigger on matching values. Choose a qualifier and·
set a value. Qualifier can be: = to equal the value, > to rise, < to fall, d to be different, g
to be greater, l to be less than.

Some views include multiple graphs- this allows them to data with different variables, time scales,
triggers and offsets.

Copyright © 2010 by HannoWare.com

ViewPort 38

5.12 Widget Development Kit
The ViewPort Development Kit allows you to build plugins for ViewPort to let users interact with
data in new ways. Widgets have access to all of ViewPort's data, including data values, meta
data about each channel, and general data. Widgets can access ViewPort controls like the
timescale selector and can send data back to the Propeller. Developers can package graphic
files, views, dll's and a help file into a vpc plugin file for easy distribution. Users install a plugin by
opening it with ViewPort.

The Kit is only made available to registered users of ViewPort + Developer.

More details available at: http://hannoware.com/viewport/plugins

Copyright © 2010 by HannoWare.com

Part V: Reference (Windows Application)39

5.13 DSO Widget
The oscilloscope graphs the value of one or more variables over time. You can change the time
scale, time offset vertical resolution, coupling, autoscale, and trigger mode.

 AutoScale automatically scales and center each trace so it fits on the screen at the right place.
Of course you may override these by dragging the traces with your mouse or changing the
resolution.
You can move a channel trace my dragging it with the mouse. You can scroll back in time by
using the scroll bar at the bottom or dragging the grid back and forth. To change the time
resolution use the timescale control. Add and change value-based triggers by clicking/dragging
just to the left of the graph. Use cursors to measure the signal. Click the "Connect"/"Stop"
buttons to start or stop the connection. Auto measurements display the signals amplitude, limits,
average, period, frequency, and root mean square.

Copyright © 2010 by HannoWare.com

ViewPort 40

5.14 LSA Widget
The logic analyzer graphs individual bit traces over time. Since the Propeller is a 32 bit
processor, ViewPort graphs up to 32 bit traces- but you can configure the variable to label
individual bits or groups of bits. Unlike real instruments, ViewPort lets you use the LSA on
variables running inside the Propeller, not just the IO port.

The graph shows the individual bit traces- numbered and labeled on the left. You can change the
timescale, time offset, and choose which channel to graph. You can move the traces horizontally
by dragging them with the mouse or using the top scrollbar. To change the time resolution use
the timescale control. Add and change single bit/edge/pattern triggers by clicking on the bit's
label. Use cursors to measure the signal.

Copyright © 2010 by HannoWare.com

Part V: Reference (Windows Application)41

5.15 Fuzzy Logic Control Panel Widget
Fuzzy Logic simplifies some control problems by making control values understandable to
humans. See: http://en.wikipedia.org/wiki/Fuzzy_system on the web, or the Fuzzy Logic Concepts
section, or the section on the Fuzzy Logic Engine Object. This page covers the Fuzzy Logic
Control Panel.

When your program includes a shared fuzzy logic engine, ViewPort enables the fuzzy logic
control panel view. This view shows an oscillloscope on top and the overview panel on the right.
The Fuzzy panel displays fuzzy maps and fuzzy rules.

Fuzzy Maps
Fuzzy maps are graphed on the left. In the image above, you'll see 7 maps. Each one maps a
variable's value onto 5 classes. The vertical red line in each map indicates the exact value of the
variable. The area in blue indicates the proportion of membership of each class. If the area is
completely blue, membership is 100%. If the variable's value lies between 2 classes, both
classes will have some blue- see the 3rd map in the image above. You can change how classes
are mapped in real time by clicking on the value and typing a new value.

Fuzzy Rules
Fuzzy rules are graphed on the right. You'll see 2 rules in the image above. Rules use 2
fuzzified variables as input to a lookup table. The inputs are indicated as horizontal and vertical
axis. You can click and change the values of the lookup table to change the rules behavior.
When your program is running, the yellow/orange/red areas indicate the proportion of the rule
that's firing- the red area has the highest impact, then orange, then yellow.

Copyright © 2010 by HannoWare.com

ViewPort 42

5.16 Fuzzy Logic Concepts
Fuzzy Logic is a technique to efficiently solve some control problems. ViewPort comes with a
Graphical Control Panel view found in the "Fuzzy" view, and a Fuzzy Logic Engine implemented
in the "fuzzy.spin" object. ViewPort's fuzzy logic implementation consists of fuzzy maps, fuzzy
rules, and fuzzy logic functions.

Fuzzy Maps

Fuzzy Maps "fuzzify" a number, by mapping it to 5 classes. In the image above there are 5
classes to which a number can belong:

Class Minimum "Center" Class Maximum
Class 0: Very negative -infinity -200 -80
Class 1: Negative -200 -80 0
Class 2: Zero -80 0 80
Class 3: Positive 0 80 200
Class 4: Very Positive 80 200 infinity

Notice that a number can belong to 1 or 2 classes. For example, -30 (as shown above) belongs
mostly to the "zero" class, but also to the "negative" class. The red line indicates the exact value,
the blue level shows degree of membership of the class. Only 2 parameters are required for
each map since the center for class 2 is 0 and the classes are symmetric around class 2. These
parameters (the centers for class 3 and class 4: 80 and 200 in our example) are provided as a
parameter to the "setMap" function for the "Fuzzy" spin object. They are also shown in the
control panel and can be edited. The fuzzy logic engine has 2 "fuzzy registers", A and B. To
fuzzify an integer into A, use "fuzzifyA(valueToBeFuzzified, mapNumber)" where mapNumber is
the number set up by the "setMap" function. "FuzzifyB" does the same for fuzzy register B. Most
of the time you will want to defuzzify the result of a fuzzy calculation with the
"deFuzzify(mapNumber)" function. This maps the fuzzy register A back to a number using the
specified map. You could also call "getTopClass" which returns the class number in register A
with the highest membership:0..4

Fuzzy Rules

Fuzzy Rules allow you to control 1 output variable using 2 input variables and a lookup table.
You need to specify the input variables and lookup table using the "setRule" function. The control
panel allows you to change the "result" values in the lookup table by clicking to edit the value.
Calling the "doAnd" or "doOr" functions will calculate the result by looking up all classes which
have some fuzzy membership and applying the appropriate fuzzy logic. In the above example,
posE is "very negative" and velE is mostly "zero", so the result of a "doAnd" call will be class "0".
When your program is running, the red square tells you which result has the highest weight.
Fuzzy logic ensures that the output function is smooth and continuous across the input space.

Fuzzy Logic Functions
The engine also supports boolean functions: doAnd, doOr, and doInv. doInv takes the fuzzy
inverse of A and returns it into A. doAnd and doOr take the fuzzy AND/OR of registers A, B and
place the result into A.
Lastly, to share the fuzzy logic engine with ViewPort, use the vp.register(f.start(@FuzzFrame))
line after initializing all your fuzzy maps and rules. Then, call f.share(@FuzzFrame) once in your
control loop to share the data.

Copyright © 2010 by HannoWare.com

Part V: Reference (Windows Application)43

5.17 Terminal
ViewPort includes a terminal widget that shows the terminal output of your program when using
the terminal object. Entering text into the text area will send the keystrokes to the Propeller
where they can be read in as bytes, strings, integers and floats.

Copyright © 2010 by HannoWare.com

ViewPort 44

5.18 Spectrum Analyzer Widget
Use the Spectrum Analyzer to analyze the spectral composition of a variable's values over time.
Start with the Oscilloscope to ensure you signal is properly scaled and triggered, then view the
signal and its analysis on the spectrum analyzer. The spectrum analyzer displays a power
spectrum over a given frequency range in real time.

Copyright © 2010 by HannoWare.com

Part V: Reference (Windows Application)45

5.19 XY Widget
Use the XY graph to analyze how 2 signals relate to each other across time. The signals are
assigned to the X and Y axis and the values are plotted one sample at a time. Start with the
Oscilloscope to ensure your signal is properly scaled and triggered, then view the signal in the XY
graph. Move and scale the waveform's in the oscilloscope mode to suit the XY graph.

Copyright © 2010 by HannoWare.com

ViewPort 46

5.20 Debugger
The Spin Debugger greatly simplifies debugging code. It lets you stop the program at a given
point (a breakpoint) or pause it at the press of a button. You can step one line of code at a time
while you're watching your variable values change in real time. The call stack and profiler tell you
how your program got to it's current state and how much time is spent in each function.

The Debugger is part of the "code" view, so start by clicking the "code" tab in the main ViewPort
window. You should see your current spin file with familiar "Propeller Tool" syntax highlighting.

After pressing the triangular "play" button to "start debugging", you can:
- set a breakpoint by clicking on the line number you wish to pause the program at. Once the cog
running your program reaches this line, it will pause execution
- resume from a breakpoint by clicking the "play" button again. To remove your breakpoint, click
the line number again.
- pause your code where it's currently executing by clicking the "pause" button.
- step into functions called by a line of spin code by pressing the "step into" button
- step over a line of spin code by pressing the "step over" button
- step out of a function by pressing the "step out" button
- view the call stack window to see which functions were called to get to the current state
- the watch window shows variables you've shared with ViewPort- including their address in main
Propeller memory and their value. Click on the address to scroll the "Memory" window to that
address. Click on the value to change it.
- the profiler shows how much time is spend in different functions
- the memory shows a complete snapshot of the Propeller's 32kb main
memory- taken at each step
- the command interpreter window lets you interact with the debugger:
- "h": for a help listing
- "set VAR=VALUE": sets variable named "VAR" to "VALUE"
- "print VAR": prints the value of variable named "VAR"
- "r":run until breakpoint
- "s":step 1 line of spin code
- "sN":step N lines of spin code
- "p" : pause execution
- "w VAR=<>VALUE":conditionally runs while variable "VAR" =<> "VALUE"
- "u" VAR=<>VALUE":conditionally runs until variable "VAR" =<> "VALUE"
- "a":animates the program, by taking ~5 steps/second
- mouse over a shared variable to see it's value or change it.
- load a file by clicking "File:Open" or selecting from the file browser
- save a file by clicking "File:Save"
- view a spin project's objects in the Object view
- view a spin file's documentation by clicking the "Documentation" button
- manage multiple spin files in tabs, close with the "x" button.
- use any of the other ViewPort windows while you're debugging

To use the Debugger on your own programs you should:
- use the 80MHz clock mode
- declare vp:"Conduit" as an object
- call vp.share with the address of memory you wish to watch

Copyright © 2010 by HannoWare.com

Part V: Reference (Windows Application)47

5.21 OpenCV
The OpenCV integration lets you easily experiment with state-of-the-art computer vision with your
ViewPort/Propeller combination. Find x,y of faces, colored blobs, circles, textures all using spin
code!
OpenCV has been the leading Computer Vision library for 10 years, it was used by Stanford to
win the DARPA race. Until now, it was difficult to do vision processing with OpenCV and control
real-world devices. With the ViewPort integration, people will have the best of all worlds- easy
integration with all sorts of real world sensors and actuators with the Propeller and state of the art
vision algorithms from OpenCV, all presented with a simple interface inside of ViewPort.

To get started, click on the "video" view inside of ViewPort. This will bring up the "video" view
with a "video" panel and an "opencv" control panel. Use the "openCV" panel to control from
which source (image file, video file, webcam, propeller frame grabber) video should be shown.
Click the "filter" tabs (edge, face, color, circle...) to apply different filters to the video. If the video
has already been filtered by the Propeller Vision Filter, it will show that result. Each "filter" tab
has additional controls- play around!
For info on capturing video with the Propeller look at the VideoCapture object.
For info on using a video file, visit: http://opencv.willowgarage.com/wiki/VideoCodecs
For info on filtering video with the propeller look at the Vision Filter object.
If you have a webcam connected that works with other Windows applications like Skype, it should
work here- you may have to try different numbers in the box next to "Webcam". Try
0,1,100,101,200,201...
The video output will show the filtered video, the location of found objects, and the cursors
location and value- all standardized to return numbers between 0 and 1000.

Copyright © 2010 by HannoWare.com

ViewPort 48

Part VI
Reference
(Propeller

Objects)

ViewPort

6.1 Overview
There are 6 components in the ViewPort library.

Conduit runs in one cog and is mandatory. It moves data back and forth to and from the·
host computer and manages the ViewPort system on the Propeller.
QuickSample runs in either 1 or 4 cogs and takes quick measurements of the INA port.·
Fuzzy Logic Engine is a library of spin functions which provide fuzzy logic operators. It does·
not use a separate cog.
PropCVCapture runs in 1 cog and captures video data into an array.·
PropCVFilter runs in 1 cog to apply vision filters to the memory array·
Terminal is a wrapper around the Conduit object- use it instead of Conduit when you need a·
terminal session as well as ViewPort.

Propeller Resource Requirements
At minimum, 1 cog is required to integrate with ViewPort- this cog will run the ViewPort Conduit
code. Additional components may require additional cogs- as specified above. ViewPort
requires 2 Pins for serial communication with the host system. The code for ViewPort objects
requires relatively little global memory space. However, the QuickSample, VideoCapture and
Vision objects require memory space for the sample measurements and video data- use the
Propeller Tool to make sure you're program doesn't exceed the Propeller's memory bounds.

Copyright © 2010 by HannoWare.com

ViewPort 50

6.2 Conduit
Your Program must include and start this Object to use ViewPort. This Object allows you to
register additional components, share data, configure and start ViewPort.

Features:
-Transfers data at up to 2Mbps Full-Duplex over a Parallax USB-Serial connection or
 115Kbps over other Serial connections.
-Manages configuration of variables and registration of ViewPort objects
-Automatically switches between baud rates depending on ViewPort setting

Use:
-Include this object in your program (MANDATORY):

Obj vp:"Conduit"

-Share Data and Start (mandatory, but must be last vp command in your program):
To share data, ViewPort needs to know the location of memory to track. The share
command lets you specify the start and end of memory to share:
vp.share(@varA,@varC) 'one cog is started to share memory between varA and varC

-Share Arrays (optional)
The first element of the array can be graphed inside of ViewPort. The full array is
accessible through DDE. The arraytype should be a unique number starting with 5.
vp.array(@array,arraylength,arraytype)

-Register Components (optional)
If you're using other ViewPort components like QuickSample or VideoCapture, you need
to register them with ViewPort:
vp.register(startValue) 'the start function of each components provides the StartValue

Configure ViewPort (optional):
All configuration is optional and can be performed from within the ViewPort interface.
You may configure it here to start ViewPort in a certain mode. See Configuration String
section for more detail- or use ViewPort to create the configuration for you.
vp.config(configStr)

Copyright © 2010 by HannoWare.com

Part VI: Reference (Propeller Objects)51

6.3 QuickSample
Use this Object to take measurements of INA at very high speeds.
Users can use ViewPort to analyze those measurements alongside other variables
from their program.

Features:
-Measure 1440 samples at 32bit up to 80MHz using 4 cogs.
-Measure 360 samples at 32bit up to 20MHz using 1 cog.
-Flexible timescale from seconds to nanoseconds
-Edge and Pattern Triggers- can be reset by ViewPort if not Trigger found
-Samples are continuously taken by 1 or 4 interleaved cogs running self modifying assembly
code.

Use:
-Include this object in your program:
 Obj qs:"QuickSample"
-Allocate memory for the INAFrame:
 LONG INAFrame[400]
 Allocate ~400 longs for the INAFrame if using 1 cog, or 1600 if using 4.
-Register with ViewPort before the vp.start command
 vp.register(qs.sampleINA(@INAFrame,NumberOfCogs))
 NumberOfCogs should be 1 cog to sample up to 20MHz, or 4 to sample up to 80MHz

Frame Internals
The first 10 longs are configuration variables managed by ViewPort for timescale, trigger, as well
as synchronization markers. This is followed by data samples

ViewPort will update configuration parameters and restart the QuickSample cogs when:
frame timescale changed·
trigger changed·
every now and then·

The quicksample code supports either 1 or 4 cog mode. It dynamically changes its code for each
sampling run.

Copyright © 2010 by HannoWare.com

ViewPort 52

6.4 Fuzzy Logic Engine
Use this Object to add a fuzzy logic engine to your program.
Fuzzy Logic simplifies some control problems by making control values
understandable to humans.

See the section on Fuzzy Logic Control Panel for more details on the control panel, or Fuzzy
Logic Concepts for additional help on basic concepts.

Features:
-Easily implement fuzzy logic in your Parallax Propeller programs
-Supports all fuzzy logic operators: not, or, and, fuzzify, defuzzify, andrule, orrule, topclass
-Allows multiple fuzzifying maps and rulesets
-Rich user interface via Viewport: variable membership is shown on maps and rulesets. All
parameters can be changed on-the-fly by clicking the number
-High performance- typical fuzzy logic calculations run in less than 1ms.

Use:
-Include this object in your program:
 Obj f:"fuzzy"
-Register with ViewPort before the vp.start command
 vp.register(f.start(@FuzzFrame))
 *Allocate ~250 longs for the FuzzFrame
-Set up the mapping functions:
 f.setMap(MapNumber,@VariableToBeMapped,Class4,Class5)
 *The classes will have midpoints at(-Class5,-Class4,0,Class4,Class5)
-Initialize the rules:
 f.setRule(RuleNumber,@Var1,@Var2,@RulePtr)
 *RulePtr should point to an array of 28 bytes

In your control loop:
-Fuzzify your variables into the 2 Fuzzy Registers:
 f.fuzzifyA(varA,MapNumber)
 f.fuzzifyB(varB,MapNumber)
-Perform your calculations:
 f.doOr
 f.doInv
 f.doandRule(RuleNumber)
-Defuzzify the result into a variable:
 varC:=f.defuzzify(MapNumber)
-Share data with ViewPort during development:
 f.share(@FuzzFrame)

Copyright © 2010 by HannoWare.com

Part VI: Reference (Propeller Objects)53

6.5 PropCVFilter
Use this Object to continuously apply vision filters to video data captured
by PropCVCapture. Spin commands are used to manipulate a vision program which
is run in assembly in its own cog.

Features:
-Implements common vision filters in assembly for real time performance- up to 30fps
-Combine multiple filters using a "vision program"
-Supports 1, 2 or 4 video buffers
-Commands: copy, invert, threshold, difference, chaos, max, pattern

Use:
-Supply Propeller with video signal and capture with PropCVCapture
 See VideoCapture for details
-Include this object in your program:
 Obj ve:"PropCVFilter"
-Start PropCVFilter Object
 ve.start(@videoFrame,video#VIDEO4) 'start cog to apply vision filters
-Program Vision Filters
 ve.filter(0,0,ve#pattern) 'draw a pattern into frame 0
 ve.filter(1,0,ve#invert) 'invert pixels from 0 to 1
-The Vision object will continually apply the programmed filters to incoming video

Copyright © 2010 by HannoWare.com

ViewPort 54

6.6 PropCVCapture
Use this Object to capture video into an array which can be streamed to ViewPort
for display. Other programs can analyze the data and use ViewPort to display
their output.

Features:
-Capture NTSC video up to 240h x 200v at 16 grayscales into 24kb buffer at 30fps
-Supports lower resolution of 120hx100v at 16 grayscales into a 6kb buffer at 30fps
-Continuously stream video, or take one snapshot
-Realtime tracking of a bright blob without using memory at 30fps

Use:
-Supply Propeller with video signal
 To generate the signal, use a "C Cam 2A" available at http://electronics123.com
 To sample the signal, use a "ADC08100" available at digikey.
 Connect the camera's NTSC composite signal to the ADC's input and connect the
 ADC's output to the Propeller's pins 0..3. Drive the ADC's clock with Propeller's pin 14.
-Include this object in your program:
 Obj video:"VideoCapture"
-Allocate memory for the VideoFrame:
 LONG VideoFrame[6000] '6000 for hi-res, 1500 for lo-res
-Register with ViewPort before the vp.start command
 vp.register(video.start(@videoFrame,video#HIVIDEO))
-Analyze VideoFrame
 8 pixels are encoded into each long. Item 0 is top left.
 ViewPort will show the video image and can mark a box if supplied with
 a variable named visionXYWH- where x is top 8 bits, y is next 8, w is next 8,
 h is last 8.

The low-cost cmos camera which allows the Propeller to capture video at 240x240@256
graylevels at 30fps and stream video to the Viewport at 240x200x16 grays is the "C Cam 2A"
available at: http://www.electronics123.com/

The camera's composite NTSC signal is digitized by a high-speed ADC- like the "ADC08100".

Theory:
A picture is imaged by the camera, converted to NTSC, sampled by the ADC into 8 bits and then
read as a digital value by the Propeller. The Viewport TV object running on the Propeller samples
the INA port, finds the syncs, and "compresses" the data into a frame which is then sent to the
Viewport application.

Copyright © 2010 by HannoWare.com

Part VI: Reference (Propeller Objects)55

6.7 Terminal
Use this Object instead of a FullDuplexSerial derivative to quickly get started with ViewPort.
ViewPort has a terminal view which let's you use your existing terminal code.

Features:
* Full suite of terminal functions to receive and transmit strings and integers
* Fully compatible with "Parallax Serial Terminal"
* Wrapper for all Conduit functions- just use this object
Use:
-Include this object in your program- replace your existing FullDuplexSerial variant:
 Obj vp:"Terminal"
-Allocate 2 longs, these must be the first 2 longs shared by vp.share
 VAR long OutP,InP
-Configure and share memory with ViewPort
 vp.config(string("start:terminal::terminal:1"))
 vp.share(@outP,@inP) 'use instead of vp.start(30,31,0,9600)
Here's a simple program:
OBJ
 vp: "terminal"
var
 long OutP,InP
pub main
 vp.config(string("start:terminal::terminal:1"))
 vp.share(@OutP,@InP)
 repeat
 vp.str(string("Hello World!",13))

Terminal Input/Output Functions
 Char(byte) Print a byte
 Chars(byte,count) Print a byte count times
 Str(stringptr) Print a string
 Dec(value) Print a decimal number
 Hex(value, digits) Print a hexadecimal number
 Bin(value, digits) Print a binary number
 DecFP(value,dp) Print a floating point number
 CharIn Receive a byte of data
 StrIn(stringptr) Receive a string
 StrInMax(stringptr,maxcount) Receive a string limited by maxcount
 DecIn Returns decimal string as value
 BinIn Returns binary string as value
 HexIn Returns hex string value as value
 RxCheck Check if byte received (never waits)
 RxFlush Flush receiver buffer
Terminal Positioning
 Clear, ClearEnd, ClearBelow
 Home Position(x,y), PositionX(x), PositionY(y)
 NewLine, LineFeed,MoveLeft,MoveRight,MoveUp,MoveDown
 Tab, BackSpace,Beep
ViewPort Functions
 Share(@varA,@varC) Share memory from varA to varC with ViewPort. This lets you
 monitor&change them. You MUST use this function- at the start of
 your program, but AFTER "register" and "config" statements.
 Register(component,cfg) Register other components (fuzzy logic, video, quicksample..)
 Config(cfgstring) Configure ViewPort. CfgString can be generated by ViewPort.

Copyright © 2010 by HannoWare.com

ViewPort 56

6.8 Configuration Strings
You can include configuration strings in your Propeller Program to configure ViewPort. Doing this
is optional, but gives you the power to control exactly how ViewPort will display the data from
your program. The easiest way to create the strings is to configure ViewPort with the
configuration wizard and instrument controls and then selecting "Copy to Clipboard" from the
"Configuration" menu. You can also copy configuration code from other tutorials or type it in
directly.
All configuration strings must be passed to the conduit object using the vp.config method before
the vp.share method is called.
There are 2 types of configuration sections: global and graph. The global configuration sections
are called "var" and "edit". These let you configure the variables used in ViewPort and the
variable to be edited with controls. "Graph" sections correspond to graph widgets defined by a
view's XML file. "LSA" is used by the LSA widget, "DSO" by the DSO, Spectrum Analyzer, and
XY widgets. All properties have defaults, so feel free to specify only what you need.

Global Configuration Section:
"var"
Configure variable names and properties with "var" followed by a comma separated list of
variable names with optional properties in parenthesis. If specified, properties are comma
separated, name=value pairs and may include:

 "f": formula for calculating the display value from the Propeller's integer representation.·
Either "x/scale+offset" or "scale/x+offset" where "scale" and "offset" are numbers.
"unit": Suffix for the variable's value·
"string=x":Variable point to a string of length "x" bytes. X must be a multiple of 4. This·
variable can not be the last variable shared.
"base": value will be displayed in this base: valid=2,10,16·
"decode": to set up a decode channel using "source[startbit..endbit]"·
"bits": to label individual and groups of bits using·
"[<#><name>,<#><name>,<groupname>[<#><name>,<#><name>]]" where # is the bit's
number and <name> and <groupname> start with a non-digit.
"mode": can be set to "log" to indicate value should be graphed in log mode·
"min"/"max" to set default minimum/maximum for variable·

Example from tutorial #1:
vp.config(string("var:io(bits=[cntr[16..19],30tx,31rx]),freq(unit=Hz,f=x/1000,min=0,max=10)"))
Here, ViewPort will have 2 variables labeled io and freq. IO will have it's bits labeled. Freq is
measured in "Hz" and range from 0 to 10. When the Propeller sends an integer of 1000,
ViewPort will display a value of 1Hz.

"edit"
Configure edit controls with "edit" followed by a comma separated list of variable names with
optional properties in parenthesis. If specified, properties are comma separated, name=value
pairs and may include:

"min"/"max" to set minimum/maximum for the control·
"default": to specify the default value which is sent at connect·
"label": to set the labels shown with certain edit controls·
"mode": to specify which controls to sue for editing, defined by each view- but can include·
one or more of: "switch,text,dial,scroll,slider". Multiple values must be comma-separated and
bracketed.

Example from tutorial #1
vp.config(string("edit:freq(default=5,mode=[dial,text,scroll])"))
Here, ViewPort will edit 1 variable- freq. When ViewPort first connects, it will set freq to 5.
ViewPort will draw a dial, textbox, and scrollbar for this channel.

Copyright © 2010 by HannoWare.com

Part VI: Reference (Propeller Objects)57

6.9 Configuration String Part 2
Graph Configuration Section:
"dso","lsa", or other as defined by the view's graph widget
Configure a graph widget with the graph's name: "dso", "lsa", or other followed by a comma
separated list of name=value pairs which may include:

"timescale"= time scale for graph·
"timeoffset"= offset from trigger point or current measurement·
"cursors"= sets cursor state using this format [xstate,xa,xb,ystate,ya,yb] where state can be·
"on" or "off", and xa, xb, ya, yb can be 0-1000 giving position.
"ymode"= defines how graph range will be set: can be autoscale, manual or ranged·
"view"=followed by a single variable or multiple comma-separated variables in brackets.·
Each variable may have graph properties which must be comma separated in parenthesis:

"mode"=coupling mode, "ac" or "dc"·
"offset"= offset to midpoint in graph·
"scale"=units for a whole screen·

"trigger"=to set a trigger for the graph. There are 3 different types of triggers:·
"SingleBit": this is the simplest trigger, used to trigger on one single bit in LSA mode.·
Specify the variable, bit, and edge("r" or "f") you wish to trigger on:
"trigger=<variable>[<bit>]<edge>"
"MultiBit": this allows complete flexibility in setting a binary trigger. Specify the variable·
followed by a pattern string: "trigger=<variable>[<pattern>]" Each character in the string
represents a bit- lsb is the rightmost. Choose from "0"- bit must be low, "1" must be high,
"r" must transition from low to high, "f" must transition high to low, "x" don't care.
 "Value": this is used to trigger on analog values. Specify the variable, operator and·
value: "trigger=<variable><operator><value>" where value is a number or "auto" to
specify auto-trigger mode. Choose an operator from ">":rise, "<":fall, "=":equal, "{":less
than, "}":greater than, "!" is different.

Example from tutorial #1:
 vp.config(string("lsa:view=io,timescale=1ms,trigger=io[16]r"))
Here ViewPort will set up the lsa view to view the io channel. It sets the timescale to 1ms/div and
starts a trigger on the rising edge of bit 16.

Configuration String Parsing:
:: separates groups
 : separates name from value
 () is used for for commas-separated lists of name=values minor variables
 [] is used for lists of comma-separated values
 . is used for decimal point and bits
 = is used for assignment
<allconfig> ::= {<cfg> "::" }
<cfg> ::= <config name:string> ":" {<namevalue> ";"}
<namevalue> ::= <name:string> "=" {<value> "," }
<value> ::= e|<int>|<string>| <string> "(" <namevalue> ")"

Copyright © 2010 by HannoWare.com

ViewPort 58

Part VII
Problem Solving

ViewPort

7.1 Problem Solving
Setup.exe doesn't run:·
Make sure you have sufficient priviledges to install a new application. Also insure that your
Antivirus software is not blocking new installs.

Setup tells me to install the Microsoft .Net Framework:·
This is normal. ViewPort was built on .Net Framework. It should detect if you need to install
this, and will then help you download and install it from Microsoft.

The ViewPort Application starts but doesn't Connect.·
Check to make sure your Propeller IDE can successfully identify your Propeller and download
a program to the chip. Make sure your Propeller Application is starting the ViewPortConduit
Object. Set the Port manually under Edit/Preferences. Switch to a slower baud rate.

If you have other problems try our forums: http://forums.hannoware.com

Copyright © 2010 by HannoWare.com

ViewPort 60

PartVIII
Glossary

ViewPort

8.1 Glossary
DSO: digital storage oscilloscope·
LSA: logic state analyzer·
GUI: guided user interface·
Widget: A view is composed of widgets. Widgets can display data- like a graph or provide·
control, like a time scale dial.
View: ViewPort provides views for different tasks. Views display data and allow control of·
Propeller programs.
Conduit: The conduit is a required ViewPort object that transmits data from Propeller memory·
to the PC and executes PC commands on the Propeller.
Variable Channel: is created when you share a variable. You can graph this data and edit the·
variable's value. Sharing more variables will decrease the effective sampling rate of the
streamed data.
Frame Channel: is created when you register the QuickSample. Doing so will allow you to·
sample the IO port at fast rates, but slow the sampling rate of the other streamed variables
channels. You can't edit the frame channel.
Decode Channel: is used when the value you want to display is "embedded" in another value.·
For example, when you read a binary counters value with pin 10-17 of the Propeller, the
counter's value is embedded in bits 10-17 of the INA variable. A Decode Channel gets its
values by decoding a source channel with set parameters- in our case- masking out bits 10-
17 and shifting right by 10. Since it's value is computed on the fly within ViewPort, it does not
affect the sampling rate and you can't edit this channel.
Control Channel: is used when you need to change variables in Propeller memory but don't·
need to stream them back to the PC- ie parameters as opposed to sensor readings. The
variables edited by control channels start with the one after the last shared variable. For
example, if you allocate these variables:

main |a,b,c,d
and share just a and b with this statement

vp.share(@a,@b)
then the first control channel will map to variable c, and the second to variable d

Copyright © 2010 by HannoWare.com

ViewPort 62

Part IX
How To Buy

ViewPort

9.1 How To Buy
Free Evaluation
Download a 30 day free trial version of ViewPort from our website:
http://hannoware.com/viewport

Purchase License Online
Visit our website to securely purchase a license for the components you wish to use using Google
Checkout or PayPal:
http://hannoware.com/viewport/register.php

Upgrade your License Online
Visit our website with your existing license to upgrade your license to use additional components.
http://hannoware.com/viewport/upgrade.php

Distribution:
Distribution of ViewPort Trial are allowed. Distribution of licenses is NOT allowed. ViewPort may
not be installed on a network.

Copyrights:
ViewPort is a trademark of HannoWare.
ViewPort and all files installed by the ViewPort installer are copyrighted 2007-2010 HannoWare.
Propeller, BS2, Basic Stamp 2 are trademarks of Parallax, Inc.

Copyright © 2010 by HannoWare.com

ViewPort 64

KEYWORD INDEX

65

- a -
about 13
applications 12

- b -
blog 13
breakpoint 49

- c -
channel 39
communication 29
computer vision 50
conduit 51
conduit 2mbps share edit
 view 53
configuration string 59
configuration wizard 36
contact 13

- d -
debug 49
debugger 49
disconnect 22
dso 18
dso oscilloscope 42

- e -
edit 29
edit variables 21
email 13

- f -
fax 13
file 29
forum 13
fuzzy logic 44, 45, 55

- g -
gauge 34
get started 16

- I -
INA sample 54
install 15
integrate 23
integration overview 24
introduction 8
issues 61

- l -
logic analyzer 43
lsa 18, 43

- m -
menus 29

- o -
opencv 50

- p -
parallax 11
pc application 14
phone 13
problem 13
problems 61
propeller 11, 51

- r -
reference 28, 51

- s -
source code 27
spin program 25

- t -
terminal.spin 58
tutorials 16, 32

- u -
uses 12

- v -
variable 39
video tv ntsc capture 57
views 19
vision algorithms 50
visual studio 49
visualizer 34

- w -
web 13
welcome 6

- x -
xy 48

