
Learning with TBot
Version .3

Warranty
OneRobot warrants its products against defects in materials and workmanship for a period of 90 days from receipt of
product. If you discover a defect, OneRobot will, at its option, repair or replace the merchandise, or refund the purchase
price. Before returning the product to OneRobot, call for a Return Merchandise Authorization (RMA) number. Write the
RMA number on the outside of the box used to return the merchandise to OneRobot. Please enclose the following along
with the returned merchandise: your name, telephone number, shipping address, and a description of the problem.
OneRobot will return your product or its replacement using the same shipping method used to ship the product to
OneRobot.

14-Day Money Back Guarantee
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full
refund. OneRobot will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is
void if the product has been altered or damaged. See the Warranty section above for instructions on returning a product
to OneRobot.

Copyrights And Trademarks
This documentation is Copyright 2012 by OneRobot. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with OneRobot products. Any other uses are not
permitted and may represent a violation of OneRobot copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
OneRobot. Duplication for educational use, in whole or in part, is permitted subject to the following conditions: the
material is to be used solely in conjunction with OneRobot products, and the user may recover from the student only the
cost of duplication. Check with OneRobot for approval prior to duplicating any of our documentation in part or whole
for any other use. OneRobot, TBot are trademarks of OneRobot. 12Blocks, ViewPort are trademarks of HannoWare.
Propeller and Spin are trademarks of Parallax Inc. If you decide to use any of these words on your electronic or printed
material, you must state that “(trademark) is a (registered) trademark of OneRobot” upon the first use of the trademark
name. Other brand and product names herein are trademarks or registered trademarks of their respective holders.

Disclaimer Of Liability
OneRobot is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or
under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property,
or any costs of recovering, reprogramming, or reproducing any data stored in or used with OneRobot products.
OneRobot is also not responsible for any personal damage, including that to life and health, resulting from use of any of
our products. You take full responsibility for your OneRobot application, no matter how lifethreatening it may be.

Errata
While great effort is made to assure the accuracy of our texts, errors may still exist. Occasionally an errata sheet with a
list of known errors and corrections for a given text will be posted on the related product page at www.OneRobot.org. If
you find an error, please send an email to support@OneRobot.org.

mailto:support@onerobot.org

Table of Contents
Preface..4

The Wonderful World of Robots..4
Audience..4
Support Forums..4
Resources For Educators...5
Educators Courses..5
Copyright Permissions for Educational Use..5
About The Authors...5

Chapter 1: Getting Started..6
Step 1: Connect TBot to your PC with a USB cable...6
Step 2: Install Software..6
Step 3: Your First Program ...7
Hints and Tips..8

Chapter 2: Simple Programs...9
Basic Movement..9
Navigation..9
Square Dancing..9
Music...9
More Sample Programs:..10

Chapter 3: Advanced Programs..11
Multiprocessing..11
Using Sensors to build a Shade seeker..11
Line Follower...11
2 Robots Communicating via a shared “World” view...11

Chapter 4: Sample Classwork..13
Lab 1 - Introduction to TBot..13
Lab 2 - Line Follower..13
Lab 3 - IR Remote Control..13
Lab 4 - Maze Solver...13

Chapter 5: Challenges and Competitions...14
Robot Floor Exercise...14

Purpose...14
Rules...14

Line Following...14
Objective..14
Skills Tested..14

Capture the Flag...14
Overview..14
Game Field...15
Game Rules..15

Hex Blitz ...16
Overview ...16
Game Field ..16
Game Rules ...16
Robot Modifications ..17
Other Notes ..18

Chapter 6: Technical Details...19
Block Diagram...19
Features..20

Propeller running at 96MHz with 512K EEPROM..20

ATXMEGA32A4..20
5 line detectors sensors...20
6 IR proximity sensors..20
IR Transmitter/Receiver..20
Powerful geared motors with encoders...20
Amplified speaker...20
Microphone...20
Wireless options..20
Full-color LED..20
2 user switches..20
Status LEDs...21
14 pin Expansion port with 6 hi-speed digital and 6 analog I/O...21
Li+ Battery charges via USB..22

Schematics...22
Mechanics..23
Instruction Set..24

Chapter 7: Troubleshooting..34
Appendix A: Optional Parts..35

Preface

The Wonderful World of Robots
The TBot is a multipurpose educational robot that was designed to make learning both fun and exciting. It is suitable for
a wide range of experiments and activities right from kindergartens up to university students. It has many features like
motors control, full-colour LED lights, powerful sensors, encoders, sound playing, synthesizing, recording, plus many
other features. Most interesting is that it can be programmed with the simple drag and drop 12Blocks language making
it accessible to a wider range of users.

TBot is intended to help roboticists of various skill levels take their designs to the next level with microcontrollers and
the knowhow to implement them effectively.

The goal of this text is to get students interested in and excited about the fields of engineering, mechatronics, and
software development as they design, construct, and program an autonomous robot. This series of hands-on activities
and projects will introduce students to basic robotic concepts using the OneRobot TBot.

The activities and projects in this text begin with setting up your programming environment to help you write your first
TBot program and then move on to various activies that highlight different capabilities of the TBot.

Audience
This text is designed to be an entry point to technology literacy, and an easy learning curve for embedded programming
and introductory robotics. The text is organized so that it can be used by the widest possible variety of students as well
as independent learners. Middle-school students can try the examples in this text in a guided tour fashion by simply
following the check-marked instructions with instructor supervision. At the other end of the spectrum, pre-engineering
students’ comprehension and problem-solving skills can be tested with the questions, exercises and projects (with
solutions) in each chapter summary. The independent learner can work at his or her own pace, and obtain assistance
through the forum cited below.

Support Forums
OneRobot maintains free, moderated forums for our customers, covering a variety of subjects at
http://forums.hannoware.com including the 12Blocks programming language and the TBot robot.

http://forums.hannoware.com/

Resources For Educators
To supplement our products, we provide a curriculum for the classroom. Designed to engage students, each lab contains
full source code, online video, “How it Works” explanations, schematics, and wiring diagrams or photos for a device a
student might like to use. Curriulum targetting different age groups are available online at
http://onerobot.org/education.html

Educators Courses
These hands-on, intensive 2 hour virtual courses for instructors are taught by OneRobot engineers to prepare teachers
for the classroom. Contact us for details at http://onerobot.com/contact.html

Copyright Permissions for Educational Use
Our curriculum and manuals are all available as free PDF downloads, and may be duplicated as long as it is for
educational use exclusively with OneRobot products and the student is charged no more than the cost of duplication.
The PDF files are not locked, enabling selection of text and images to prepare handouts, transparencies, or PowerPoint
presentations.

About The Authors
Chad George earned a degree in Computer Science from Indiana University where he coauthored two papers on
biologically inspired artificial intelligence. Working in the manufacturing industry he has engineered a number of
control systems requiring the design of custom PCBs and embedded microcontrollers. He has also been very involved
in STEM education, running summer camps, starting an after school STEM club and coaching FIRST Robotics teams.
Seeing a need for a low cost, highly capable robotics system for educational environment, he designed the TBot robot
platform. Chad continues to work on improving the TBot and other hardware projects that support the OneRobot goals
of improving STEM education through hands on access to robotics.

Hanno Sander earned a degree in Computer Science from Stanford University, where he built one of the first hybrid
cars, collaborated on a microsatellite, and studied artificial intelligence. He later founded a startup to develop
customized information services and then transitioned to product marketing in Silicon Valley with Oracle, Yahoo, and
Verity. Today, Hanno’s company HannoWare seeks to make sophisticated technology—robots, programming languages,
debugging tools, and oscilloscopes—more accessible. Hanno lives in Christchurch, New Zealand, where he enjoys his
growing family and focuses on his passion of improving education with technology.

Special Contributors: Ingolf Sander, Professor Tim Bell, Steve Woodrough

http://onerobot.com/contact.html
http://onerobot.org/education.html

Chapter 1: Getting Started
By the end of this chapter you'll be writing your first program for your TBot! Let's get started with an overview of
what's involved.

Two powerful microcontrollers control your Tbot's motors, lights, sounds, communication and sensors. To control your
TBot you'll write programs using the 12Blocks visual language and download them using a USB cable. The following
figure illustrates these concepts:

Step 1: Connect TBot to your PC with a USB cable
To program your TBot you need to connect it to your PC with a USB cable. Start by
connecting the mini-USB male connector to the rear of your TBot. Finish by
connecting the USB cable to your PC. You do not need a PropPlug or other USB
to serial adapter.

Your TBot batteries will automatically be charged when connected to USB. Just
like other USB devices- for example, the Apple iPod- you don't have to worry
about its state of charge- the TBot charges itself.

When connected to USB your TBot will run from your PC's power to allow
programming, play sounds, and manipulate it's LED lights. To run the TBot's motor's
for movement, you'll need to slide the power switch to “ON”.

When your TBot is not connected to USB, it will run the last program stored into it's permanent memory (EEPROM)
when you slide the power switch to “ON”.

Step 2: Install Software
12Blocks is a visual and easy to use drop-and-drag programming language that is highly suitable for educational
purposes. It is mainly targeted at programming robots and microcontrollers and supports various types of devices.

System Requirements: You will need a personal computer to run the 12Blocks software. Your computer will need to
have the following features:

• Microsoft Windows 2K/XP/Vista/7 or newer operating system (Beta for OSX and Linux is
available)

• An available USB port
• Internet access and an Internet browser program

Download the 12Blocks installer from http://12blocks.com. A wizard interface will help you install and configure the
program for your PC. The program will start automatically and show the following introductory screen:

http://12blocks.com/

You'll need to follow the “Register here” link to register your software with the license key provided to you when you
purchased your TBot.

12Blocks supports a range of popular microcontrollers and robots- for use with your TBot you must select the TBot
library as indicated in the following image:

Close the Hardware Manager to finish setting up your 12Blocks environment- you are now ready to get started with
robotics!

Step 3: Your First Program

For our first program we'll blink the Tbot's full color LED by setting it to repeatedly changing it's color. Drag the
blocks to the worksheet and press “run”.

Concepts:

– Use a “start” block to begin a stack of blocks

– A “repeat” block will repeat the blocks attached inside of it

– Use the “set LED” block from the “TBot” section to set the color, saturation and brightness of the light
emitting diode. Click on the yellow part of a block to change a parameter.

– The “wait” block pauses the program for a number of milliseconds. If you don't use it, the color changes will
happen too quickly for you to notice.

Hints and Tips
• Press F1 to access Help for a reference of all blocks, language comparison, etc.

• 'Guided Tutorials' on the “File” menu show you how to program visually

• 'Example files' on the “File” menu gives you samples to learn from

• Store a program permanently on the TBot by pressing “Device>Load Permanently”

• Your TBot will charge when connected via USB

• To use the motors while connected via USB switch your TBot to “ON”

• Connect your TBot to other sensors and devices with the expansion connecter- refer to Chapter 6 for details.

Chapter 2: Simple Programs

Basic Movement
Now it's time to make the robot move. Make sure the TBot is in a safe
position, then switch it to “Run with motors” before loading it.

Concepts:

– “File>New” to start a new program

– “File>Save” to save it

– “move” and “turn” are in the “motion” section

– Use negative numbers to turn left or move backwards

Navigation
The TBot can be programmed to perform a variety of maneuvers. The maneuvers and programming techniques
introduced in this chapter will be reused in later chapters. The only difference is that in this chapter, the TBot will
blindly perform the maneuvers.

In later chapters, the TBot will perform similar maneuvers in response to conditions it detects with its sensors.

This chapter also introduces ways to tune and calibrate the TBot’s navigation. Included are techniques to straighten a
TBot’s forward drive, more precise turns, and calculating distances.

Square Dancing
In the last program the TBot started moving right after
we loaded it. Let's improve that so it moves after we
push the left button. Also, use the “repeat x” block to
repeat a set of blocks a number of times.

Music
You can copy and paste blocks from one program to another by selecting the blocks you need and using the
“Edit>Copy” menu

The “sound” section contains different blocks to make sounds. The “play score” blocks lets you enter notes. Make sure
to use quotes.

More Sample Programs:

1. Move in a square 2. Play musical notes

3. Flash colors when button is pressed 4. Move when front is clear

5. Move and graph motor current versus time 6. Randomly move and make sounds

Chapter 3: Advanced Programs

Multiprocessing
Use multiple “start” blocks to do multiple things at
the same time.

Using Sensors to build a Shade seeker
Now it gets a bit more complex! This program uses the
TBot's line sensor to stop the TBot on a dark area. The
sensor tells the TBot how dark the current surface is- larger
values are darker. This program begins by taking a sample
of the current area (assumed to be white) and multiplies it
by 2- to ensure that slightly darker regions are recognized
as white as well. It then repeats a small movement while
additional readings are less than the value we recognize as
white.

Line Follower
This program uses two line sensors to follow a
line. The “if” block uses logic to do one
thing or another. “If” the parameter is “true”
then the first block happens, otherwise the
“else” part happens. We compare the left to
the right line sensors and control the motor
speed so the TBot tracks the line

2 Robots Communicating via a shared “World” view
Bot #1 waits until the “left” button is pressed and then starts broadcasting elements 0..2 from the “world” array to all
other bots. This “world” array is shared between all bots and 12blocks- and each element is available for graphing from
within 12blocks. Bots use this “shared” memory to know the state of the world. They write to elements that they
broadcast, and read from the other elements. This program sets world[0] to the line sensor measurement. You can
graph this value, or use it to control other bots, just by reading from world[0]. The next line sets the led's hue to the
value in world[3]- from below- you'll see that this is set to the line sensor reading of the other bot. So, this bot's led will
change based on the position of the other bot.

Bot #2 sets world[3] to it's line sensor measurement, and sets the hue of the led to world[0]. It broadcasts world[3].

When moving both bots, 12block shows this reading:

Chapter 4: Sample Classwork

Lab 1 - Introduction to TBot
• Learn to use tool chain to write programs and load into robot
• Use user buttons and DIP switch to control program execution
• Read Sensors (Proximity, Microphone)
• Drive motors under basic sensor control
• Use LED/Speaker for representing robot status
• Begin to learn SPIN programming: basic syntax, flow control and program structure
• Learn to how to utilize premade SPIN objects to perform multiple tasks in parallel

Lab 2 - Line Follower
• Learn to use real-time debugging tools (Terminal, Data Signal Oscilloscope and Logic Analyzer)
• Read Line Sensors
• Analyze digital input/output signals controlling the line sensors and motors
• Control motors using sensors and reactive control loops
• Create custom SPIN object and process sensor data in parallel with motor control

Lab 3 - IR Remote Control
• Learn to program in Propeller Assembly
• Learn debugging techniques for assembly language programming
• Write a low-level driver to processes signals from an Universal IR Remote Control
• Control assembly language driver from high-level SPIN code to drive robot via remote control

Lab 4 - Maze Solver
• Learn to utilize multiple control techniques to complete a single task: reactive control, behavior
• based control and state machines
• Extend line following routines to handle corners and intersections
• Use proximity detectors to find "dead-ends"
• Create an internal model of the environment to solve problems

Chapter 5: Challenges and Competitions
Some of the following competitons are provided courtesy of Seattle Robotics Society.

Robot Floor Exercise

Purpose
The floor exercise competition is intended to give robot inventors an opportunity to show off their robots or other
technical contraptions.

Rules
The rules for this competition are quite simple. A 10-foot-by-10-foot flat area is identified, preferably with some
physical boundary. Each contestant will be given a maximum of five minutes in this area to show off what their robot
can do. The robot's contestant can talk through the various capabilities and features of the robot. As always, any robot
that could damage the area or pose a danger to the public will not be allowed. Robots need not be autonomous, but it is
encouraged. Judging will be determined by the audience, either indicated by clapping (the loudest determined by the
judge), or some other voting mechanism.

Line Following

Objective
To build an autonomous robot that begins in Area "A" (at position "S"), travels to Area "B" (completely via the line),
then travels to the Area "C" (completely via the line), then returns to the Area "A" (at position "F"). The robot that does
this in the least amount of time (including bonuses) wins. The robot must enter areas "B" and "C" to qualify. The exact
layout of the course will not be known until contest day, but it will have the three areas previously described.

Skills Tested
The ability to recognize a navigational aid (the line) and use it to reach the goal.

Capture the Flag

Overview
• Coordinate between multiple robots to complete a task
• Develop a protocol to handle communication between robots
• Create a strategy that maximizes the team's final score while following game rules

This is a competitive and cooperative challenge involving 2 teams of 2 robots per team. The objective of the game is
follow a winding "maze-like" line from one end to the other in order to score points. Each robot will be equipped with a
special beacon that it can activate when it reaches one end of the line. This active beacon becomes the "flag" that the
robot must carry all the way to the opposite end in order to score points.

When a robot's beacon is activated it flashes a visible light, but it also begins transmitting an IR beacon for other robots
to track onto using their front proximity sensors in passive mode. Each beacon unit is also equipped with several IR
remote receivers. Opposing robots can "tag" the robot trying to make a flag run by sending a well aimed IR signal at the
active beacon. A successful tag will prevent the team from scoring those points and temporarily disable the tagged
robots motors.

Game Field
The game field is a set of tiles arranged into 4 continuous, non-intersecting winding lines. Each robot starts the game
assigned to a specific line. At no point in the game is a robot allowed to drive completely off its line.

On each half of the board there are two lines that are interleaved. Each line has the same number of turns, but one line is
longer. Each team has a long and short line on opposite sides of the field.

Game Rules
• Each game consists of a single 90 second match.
• A team scores 2 points for every time that it successfully travels the entire line from end to end while its

beacon is active
• A team scores 1 point for every time that it "tags" an opponent robot while it has an activate beacon
• A team scores 5 points if both robots are at the end of their lines at the end of the game
• Any robot that drives completely off its line will be immediately removed from the game board
• A robot is considered off the line if no part of the line is underneath the robot.
• Robot Collisions

◦ Robot to robot contact is considered a collision when robots contact sufficiently to cause at least
one robot to drive off its line

◦ 2 point penalty is given to the offending robot and both robots are reset and placed back in their
starting position

◦ The offending robot is the robot that was outside of its own tile when the collision occurred, if both
robots are equally at fault then no penalty is given

• Beacon Overview
◦ Each beacon is controlled by a simple 2 wire interface
◦ Flag Request - this signal is sent from robot to beacon to activate the flag
◦ Flag Carry / Drop - this signal is sent from the beacon to robot to indicate when it haslost its flag

• Beacon Penalty
◦ Robots must always operate their beacons according to the game rules. Any beacon violation will

result in a 2 point penalty, and the offending robot is reset and placed back in the starting position.
• Beacon Rules

◦ A robot can only activate its beacon when it is located at the end of a line.
◦ At the beginning of the game (or whenever its position is reset due to another rule violation) the

robot must travel to the opposite end of the line before it can activate the beacon.
◦ A robot is allowed to drop its beacon at any time, but it will only be given points if it keeps the

beacon active for the entire length of the line.
◦ A robot must remain disabled the entire time the flag drop signal is held low by the beacon

Hex Blitz

Overview
This is a competitive and cooperative challenge involving 2 teams of 2 robots per team. The objective of the game is to
find and move balls on a hex grid playing field in order to score points.

Each team robots are allowed to move anywhere over its half of the playing field and can score points when a ball is
successfully moved to the opposite side of the field over special scoring markers. At the end of the game each team
receives additional points based on how many balls are on the opposite side of the field.

Coordinate between multiple robots to complete a task. Create and implement a strategy that maximizes the team's
final score while following game rules

Game Field
The game field approximately 6 ft x 4 ft and is composed of 10 hexagon platforms connected with bridges and ramps.
Four of the platforms are raised higher than the others. Each platform contains a black center marker and black lines
leading to other platforms of the same team color or scoring areas for that team.

Platforms of different heights are connected with ramps, and platforms of the same height are connected with bridges.
When a ramp connects opposite team zones, it is a scoring ramp and is marked with a checkered scoring area. A
physical barrier at the intersection of opposing zones prevents a robot from accessing the opposite team's field areas but
balls will pass under.

Walls surrounding every platform and connecting component prevent the robots and balls from leaving the playing area.

Game Rules
• Each game consists of a single 90 second match.

◦ Robots that do not stop moving at the end of the 90 seconds may be penalized if their movement
causes or prevents any points from scoring as balls come to rest.

• A team scores 1 points for every time that it passes a ball down a scoring ramp into the opponents side
of the field.
◦ Scoring ramps are the ramps that connect a high platform of one team to a low platform of the

opposite team.
◦ The point is scored when the ball crosses over the checkered scoring zone.
◦ A defender is allowed to stop the ball from crossing over the score zone.
◦ At the scoring ramp the zone barrier is at the high end of the ramp, allowing only the defending

team access to the entire ramp, however, the slope of the ramp ensures a ball will always score
unless a robot actively defends it.

◦ No points are scored when a ball is pushed up the scoring ramp, by a defender. However, the points
will be scored every time the ball passes completely through the score zone moving down the ramp

regardless of who last touched the ball.
• A team scores 2 points for every ball that is on the opposite side of the field at the end of the game.

◦ Final ball positions are scored after all motion stops.
◦ A ball touching one the black areas at zone barriers is not scored for either team.
◦ Balls touching the black guide lines are scored the same as if they were touching the closest

colored field area.
◦ A team scores a 3 point bonus for every ball that is touching the black center marker on a platform

at the end of the game.
• Any ball that leaves the playing field during the game will be returned to the field at the point closest to

its exit location.
• Robot Collisions

◦ Robots are expected to make routine, vigorous contact with all elements of the playing field,
including the balls, zone barriers and walls.

◦ If a robot's design or programming causes it to intentionally damage any game element or other
robots, it will be disqualified.

◦ Some robot to robot contact may occur when two opposing robots are at a zone barrier
simultaneously. Generally, the extent of contact will be limited by the barrier itself, otherwise this
is considered normal and fair play.

◦ There is significant potential for robot collisions to occur within the same team. This must be
considered by each team's programming strategy.

• At no point should a robot be touched by players after the game has begun.
◦ A violation of this rule will result in the offending robot being immediately removed from game

play.
◦ A player may voluntarily remove their robot at any time, however, that robot will not be allowed to

be returned to play during the game.
• Game Start

◦ Robots must be positioned on the raised platforms at the start of the game (see Figure 2)
◦ A robot can be placed anywhere on the platform, as long as some part of the robot is over the black

center marker.
◦ The 10 game balls will be arranged on each side of the zone barrier of every bridge as shown in

Figure 2.
◦ Robots should be designed to start the match when a sufficiently loud starting signal is detected

(hand clap, whistle, buzzer, etc)
◦ Robots should be designed to run autonomously for exactly 90 seconds.
◦ If multiple false starts occur, the offending robot will have to be started manually at the buzzer.

Normal end-of-game violations will be in effect even if there is a timer mismatch due to late
manual starting.

Robot Modifications
• Robots are expected to be customized with ball manipulators, guards, etc.

◦ Robots must have some physical mechanism that ensures the robot's body (metal frame, circuit
board, etc) cannot move past a zone barrier.

◦ A robot add-on is legal if it doesn't extend past the black zone marker in the middle of the bridges
when the robot is in full contact with the barrier itself (this is about 1 1/2 inches).

◦ Sufficient guarding should be added to protect a robot against contact with game elements and
other robots.

• Robots can be extended with any kind of custom sensor
• Robots can be extended with additional motors or servos
• Robots can use any kind wireless communications for coordination between robots.

◦ Absolutely no communication with non-robots should occur during any game
◦ Unintentional interference of opposing team communications should be avoided

▪ Teams using the same wireless technology should plan to coexist with other users of that
technology (different channels, network ID, etc)

• Intentional interference of opponent team communication is not acceptable and violators will be
disqualified.
◦ The use of IR for proximity ranging on the robot is never considered interference even if the other

team uses IR for communication.
• Any kind of monitoring of opponent team communications is legal and fair-play as long as such

monitoring is completely passive.

◦ Here passive means that monitoring activity cannot have any measurable impact on the opposing
team's communications.

◦ If monitoring is determined to not meet the passive criteria, then it must be disabled or it is
considered intentional interference.

Other Notes
• Most interior wall surfaces will be coated to intentionally minimize IR reflectance. This coating might

just be black paint, but could be other textured materials that absorb and scatter IR light. This is to allow
game balls to be the primary objects detected by IR proximity sensors.
◦ The black guidance lines should be used as the primary means of navigation.
◦ The scoring ramps are the exception to this rule, since there are no lines for guidance, the walls will

be left white so they can be used for wall following.
• The balls will be standard 40mm matte white ping pong balls. Balls significantly damaged during

matches will be replaced before the start of the next game, but playing with some minor damage should
be expected.

• The zone coloring will be significantly lighter than it appears in the rendered images, however, teams
should expect to need different line sensor calibration depending on which color they are playing as.
◦ Teams will be allowed to run a quick calibration routine prior to placing robots on the field at the

beginning of every match. These pre-match calibrations should take no more than 10-15 seconds.
◦ Teams will not be allowed to recalibrate due solely to a false start (even if the restart is not their

fault)
• A team is allowed to request the "Strict Robot Placement" rule if they decide its strategically important

to them
◦ Teams requesting this extra rule should inform the referee prior to starting the match
◦ The referee will flip a coin to determine the first team placement: Head = Red, Tail = Blue
◦ Then each team will alternate placing and positioning a robot on the field
◦ After a robot is placed on the field, it cannot be re-positioned
◦ Once this rule is put into effect, it remains in effect for all matches between those 2 teams
◦ Without this rule, either team can reposition their robots as much as they want until both teams tell

the referee they are ready to begin.

Chapter 6: Technical Details

Block Diagram

Programming Tool Interface Components Blocks
12Blocks USB Propeller start, repeat, set, if, functions

Bluetooth Motors drive, turn, set speed, get voltage/current
Integrates with: Xbee Xbee broadcast, terminal, mail
Skype Wifi Bluetooth send, receive
ROS Buttons pressed, released, up, down
DDE RGB LED set color, luminosity, hue
Plugins Line sensor read
XMLRPC USB charge, read voltage
Fiducials Proximity get front/sides

Sound read mic, play wav, pluck, tone, speak
Encoders move with encoders

Main Processor:
Parallax
Propeller

8 Cogs
96MHz
32Bit

2KB Cache
32KB HUB

Analog-Processor:
XMEGA A4

RGB LED

XBEE/BlueTooth

Speaker

2x H-Bridge to Motors

IR Line Sensors

Status LEDs

MicrophoneMicrophone

38KHz Infrared

IR Proximity Sensors

Power ControlPower Control

Expansion Port
6 Digital, 6 Analog

Power Control

Current/Voltage

LiPo Battery

USB
Serial Data

C
ha

rg
e

512KB
EEPROM

USB
Serial

Buck/Boost to 3.3V and 8V

Features

Propeller running at 96MHz with 512K EEPROM
Programmable with 12Blocks or any other Propeller development tool.

ATXMEGA32A4
Running Tbot firmware developed with AVRStudio. 12Blocks includes a firmware loader that can upload custom
firmware to the XMEGA using the Propeller.

5 line detectors sensors
Measures the reflectivity below the Tbot's front- great for high speed line following.

6 IR proximity sensors
Measures the distance to objects in the front and both sides by measuring how much IR light is reflected.

IR Transmitter/Receiver
Transmit and receive data using 38KHz IR pulses.

Powerful geared motors with encoders
Precise control and high speed.

Amplified speaker
Top-mounted speaker controlled by Parallax Propeller. Can be programmed to play back sound files, synthesize speech,
etc.

Microphone
React to sounds.

Wireless options
Tbot's PCB includes a header for XBee and BlueTooth modules- allowing full-duplex wireless programming and
communication at high speed.

For more information on BlueTooth refer to: http://onerobot.org/guides/bluetooth.pdf

Full-color LED
Very bright full-color RGB LED

2 user switches
2 pushbuttons on rear for user input.

Status LEDs

http://onerobot.org/guides/bluetooth.pdf

14 pin Expansion port with 6 hi-speed digital and 6 analog I/O

Pin Detail

1 Vext: Power supply, same voltage, current capacity as driving wheels. Typically 8V, up to 1A

2 SCL0: Serial Clock of I2C protocol. Propeller P28

3 IO0: Digital IO, can be sampled/toggled at up to 96MHz. Source 3.3V at 50mA. Propeller P0

4 SDA1: Serial Data of I2C protocol. Propeller P29

5 IO1: Digital IO, can be sampled/toggled at up to 96MHz. Source 3.3V at 50mA. Propeller P1

6 IO2: Digital IO, can be sampled/toggled at up to 96MHz. Source 3.3V at 50mA. Propeller P2

7 IO3: Digital IO, can be sampled/toggled at up to 96MHz. Source 3.3V at 50mA. Propeller P3

8 Ground

9 AN9: Analog IO, XMEGA PB2

10 AN8: Analog IO, XMEGA PB3

11 AN11: Multiplexed Analog IO

12 AN12: Multiplexed Analog IO

13 AN13: Multiplexed Analog IO

14 AN14: Multiplexed Analog IO

A parallel hard drive connector can be adapted to connect to the central white 7x2 header.

To manipulate/sample the digital pins, use one of the blocks from the “pins” section of the library.

To sample Analog values, use the “get” block from the “TBot” library.

Li+ Battery charges via USB
TBot includes the FTDI USB to serial chip, so you just need a USB cable- not a PropPlug.
To charge Tbot's battery just plug it into a USB cable connected to a PC.

Schematics

Mechanics

Instruction Set
Tab Section Name Detail

control

basic

start start running a set of blocks

repeat continually run the inner blocks

repeat (TIMES) times run the inner blocks a number of times
TIMES: number of times to loop

repeat (VAR) from (START) to (END) step
(STEP)

run the inner blocks with specified variable,
start, end and steps
VAR: loop variable which counts from start to
stop
START: the loop variable will start with this
value
END: the loop variable will end with this
value
STEP: the loop variable will change by this
amount each time

repeat while (CONDITION)
run the inner blocks while the condition is true
CONDITION: when this condition is true, the
inner stacks will continue to run

repeat until (CONDITION)
run the inner blocks until the condition is true
CONDITION: when this condition is true, the
inner stacks will continue to run

wait (DURATION) pause for a duration
DURATION: time in milliseconds

if (CONDITION) else

runs the first inner blocks if the condition is
true, otherwise runs the second inner blocks
CONDITION: when this condition is true, the
inner blocks will run

case (VALUE)

runs the inner block whose value matches the
condition
VALUE: value to match
CONDITION: when this condition is true,
the inner blocks will run
*Right click on block to access Properties for
custom parameters

advanced

show/edit program info

display info about variables, arrays and
imports. Ctrl-click on imported files to open
them
POSITION: position of block
SIZE: size of block
LOOK: look of block
*Right click on block to access Properties for
custom parameters

break out of loop break out of a loop

continue to start of loop continue to start of loop

stop stop this program

(COMMENT)
to document your code
COMMENT: comment which explains your
code

(COMMENT) write text code
COMMENT: code

state when in state (STATE NAME) start running a set of blocks when in a state

STATE NAME: state which starts this stack of
blocks

run state machine (NAME OF STATE
MACHINE)

run a state machine using a variable
NAME OF STATE MACHINE: variable to
use for storing machine's state

set state to (STATE NAME) set the current state of this machine
STATE NAME: the state machine's new state

event

when (KEY)
run a set of blocks when a condition is true
KEY: condition which starts this stack of
blocks

task (TASK NAME)
start running a set of blocks when a message is
received
TASK NAME: name of task

start task (TASK NAME) start a named task and immeadiately continue
TASK NAME: task to run

start task (TASK NAME) and wait
start a named task and wait for it to finish
before resuming
TASK NAME: task to run

tbot

broadcast (VARIABLES)

stream variables to all bots
VARIABLES: variables to broadcast
START:
END:
*Right click on block to access Properties for
custom parameters

receive (VARIABLES)

receive variables from other bots
VARIABLES: variables to receive
START:
END:
*Right click on block to access Properties for
custom parameters

start terminal session with bot (BOT) using
(QUEUE)

start terminal session with bot $ using $
BOT: bot to communicate with
QUEUE: terminal queue

stop terminal session (TERMINAL) stop terminal session $
TERMINAL: terminal session

send (BYTE) with (TERMINAL)
send a byte
BYTE: byte to send
TERMINAL: terminal session

receive from (TERMINAL) receive a byte
TERMINAL: terminal session

mail (OUTARRAY) to bot (BOT) respond
into (INARRAY)

send a message
OUTARRAY: message to send
BOT: bot to send to
INARRAY: message to receive

reply to (BOT) with (OUTARRAY)
reply to a message
BOT: bot to send to
OUTARRAY: message to send

receive mail from (BOT) into (MAIL)
reply to a message
BOT: bot to send to
MAIL: mail bag

receive bluetooth check for received character

send bluetooth string((VALUE)) send bluetooth string
VALUE:

send bluetooth number((VALUE)) send bluetooth number
VALUE:

get bluetooth character get next character

get (SENSOR) get $
SENSOR:

(WHICH BUTTON) button (BUTTON
STATE) within (TIMEOUT) msec

wait until a button event or timeout occured
WHICH BUTTON: button to monitor
BUTTON STATE: button state
TIMEOUT:

(WHICH BUTTON) button (BUTTON
STATE)

returns button status
WHICH BUTTON: button to monitor
BUTTON STATE: button state

set LED (HUE) (SATURATION)
(LUMINOSITY)

set the color led
HUE:
SATURATION:
LUMINOSITY:

read line sensor((BUTTON)) read line sensor($)
BUTTON: line sensor to read

terminal

print text (TEXT) send text to the terminal
TEXT: text to send

print value (VALUE) send a value
VALUE: value to send

clear screen clear the terminal screen

backspace go back one space

next line go to the next line

goto (X),(Y)
go to the specified point
X: x position of cursor
Y: y position of cursor

receive text into (ARRAY)

receive text from the terminal and store in an
array
ARRAY: array into which to store received
text

receive number receive a number from the terminal

receive byte receive a byte from the terminal

data available test if the terminal has sent something

sound

play synthesized song (SOUND) play a synthesizer file
SOUND: name of hmus file to play

stop playing song/effect stop playing song/effect

play sound effect (SOUND) play sound effect $
SOUND: name of hsfx file to play

play score (SCORE) play score $
SCORE: score to play

pluck score (SCORE) pluck score $
SCORE: score to play

set pluck volume to (VOLUME) tempo to
(TEMPO) sustain to (SUSTAIN)

change the pluck volume, tempo and sustain
VOLUME: volume to pluck at
TEMPO: tempo of plucking
SUSTAIN: sustain of pluck

play wav file (SOUND) at volume
(VOLUME)

play a wav file
SOUND: name of wav file to play
VOLUME: volume to play file at

record sound for (DURATION) ms record a sound to memory
DURATION: milliseconds to record sound

play recorded sound at volume (VOLUME) play back recorded sound from memory
VOLUME: volume to play sound at

read microphone read microphone

play tone (FREQUENCY) for (DURATION)
ms

play a musical tone
FREQUENCY: frequency of tone
DURATION: milliseconds to play tone

set tone volume to (VOLUME) change the tone volume
VOLUME: volume to play tone at

speak (SPEECH) speak text
SPEECH: text to say

speak file (SPEECH) speak a word
SPEECH: text to say

spell (SPEECH) spell text
SPEECH: text to say

set speech volume to (VOLUME) change the speech volume
VOLUME: volume to use for speech

speech parameters (GLOTTAL PITCH),
(VIBRATO PITCH),(VIBRATO RATE),
(PACE)

change the way words are spoken
GLOTTAL PITCH: voice pitch, 100=110hz
VIBRATO PITCH: voice vibrato pitch, 48=+/-
half octave swing
VIBRATO RATE: voice vibrato rate, 52=4Hz
PACE: rate at which word is spoken

set speaker (SPEAKER) to pitch (BASE)
Assign a base pitch to speaker number
SPEAKER:
BASE:

motion
move with encoders (LEFT) (RIGHT)

go with encoders
LEFT:
RIGHT:

motors

move (TIME) move forwards
TIME: msec to drive robot, negative to reverse

turn (TURN) turn
TURN: msec to turn the robot

smooth turn (TURN) turn
TURN: msec to turn the robot

set motors (LEFT) (RIGHT)
turn
LEFT: rate to move the robot
RIGHT: rate to move the robot

lock motor (LEFT) (RIGHT)
turn
LEFT:
RIGHT:

set cruise speed (CRUISE) set cruise speed
CRUISE:

correct motors by (STOP LEFT),(STOP
RIGHT),(GAIN LEFT),(GAIN RIGHT)

correct for motors with differnt speeds and 0
points
STOP LEFT:
STOP RIGHT:
GAIN LEFT:
GAIN RIGHT:

servos set servo (SERVO) to (POSITION) set a servo's position
SERVO: pin number of servo
POSITION: target position for servo

ramp servo (SERVO) to (POSITION)% over
(TIME)

move a servo to a new position over time
SERVO: pin number of servo
POSITION: target position for servo, from -30
to 130
TIME: milliseconds to ramp the servo to the
new position

idle servo (SERVO) idle a servo- don't power it
SERVO: pin number of servo

sense time
reset timer reset the internal timer

elapsed time read the elapsed time in ms since last reset

vars random((MAX)) random
MAX:

pid response to error (ERROR) with p=(P)
i=(I) d=(D)

pid control block
ERROR:
P:
I:
D:

restrict (VAR) between (MIN) and (MAX)

restrict $ between $ and $
VAR:
MIN:
MAX:

variables

set (VARIABLE) to (VALUE)
set a variable to a value
VARIABLE: variable to set
VALUE: new value for variable

change (VARIABLE) by (DELTA)
change a variable's value
VARIABLE: variable to change
DELTA: amount added to variable

set bit (BIT) of (VARIABLE) to (NEW BIT
VALUE)

set a bit
BIT: bit to set
VARIABLE: variable to modify
NEW BIT VALUE: bit value

get bit (BIT) of (VARIABLE)
get a bit
BIT: bit to get
VARIABLE: variable to inspect

arrays

set (ARRAY)((INDEX)) to (VALUE)

set an array's item to a value
ARRAY: array to set
INDEX: index of array item to set
VALUE: new value for array item

change (ARRAY)((INDEX)) by (DELTA)

change an array's item
ARRAY: array to change
INDEX: index of array item to change
DELTA: amount added to array item

get (ARRAY)((INDEX))
get an array's item
ARRAY: array to retrieve
INDEX: index of array item to retrieve

strings
set (ARRAY) to (STRING)

set $ to $
ARRAY: array to modify
STRING: text to assign

set (TEXT) to value (NEW VALUE)
set $ to value $
TEXT: array
NEW VALUE: value to add

string (FIRST) equals (SECOND) string $ equals $
FIRST: first text/array to compare
SECOND: second text/array to compare

lowercase (TEXT) lowercase $
TEXT: array to modify

uppercase (TEXT) uppercase $
TEXT: array to modify

capitalize (TEXT) capitalize $
TEXT: array to modify

reverse (TEXT) reverse $
TEXT: array to modify

make (COUNT) copies of (TEXT)
make $ copies of $
COUNT: number of copies to make
TEXT: array to modify

trim (TEXT) trim $
TEXT: array to modify

pad (TEXT) to length (LENGTH) with (PAD)

pad $ to length $ with $
TEXT: array to modify
LENGTH: length to pad to
PAD: text/array to pad with

replace (REPLACEE) with (REPLACER) in
(TEXT)

replace $ with $ in $
REPLACEE: old text
REPLACER: new text
TEXT: array to modify

join (NEW TEXT) to (TEXT)
join $ to $
NEW TEXT: text/array to add
TEXT: array join to

put (ITEM) split of (TEXT TO SPLIT) into
(RESULT)

put $ split of $ into $
ITEM: item of split
TEXT TO SPLIT: text/array to split
RESULT: result string

join (NEW BYTE) to (TEXT)
join $ to $
NEW BYTE: byte to add
TEXT: array join to

get character (TEXT)((INDEX))

get character $($)
TEXT: text/array from which to get a
character
INDEX: index

copy substring from (TEXT) starting at
(START) for (COUNT) to (OUTPUT)

copy substring from $ starting at $ for $ to $
TEXT: text/array from which to make
substring
START: starting index
COUNT: characters to copy
OUTPUT: output array

copy string beginning with (BEGIN) in
(TEXT) starting at (START) to (OUTPUT)

copy string beginning with $ in $ starting at $
to $
BEGIN: text/array to find
TEXT: text/array to search in
START: starting index
OUTPUT: output array

find index of string (STRING) in (TEXT)
starting at (START)

find index of string $ in $ starting at $
STRING: string to find
TEXT: text/array to search
START: starting index

find first index of (CHARACTER) in (TEXT)
starting at (START)

find first index of $ in $ starting at $
CHARACTER: character to find
TEXT: text/array to search
START: starting index

find last index of character (CHARACTER)
in (TEXT) starting at (START)

find last index of character $ in $ starting at $
CHARACTER: character to find
TEXT: text/array to search
START: starting index

length of (TEXT) length of $
TEXT: text/array to count

convert (TEXT) to a number in base (BASE)
convert $ to a number in base $
TEXT: text/array to search
BASE: use 10 to convert to decimal

interface

background

draw a background image
POSITION: position of background
SIZE: size of background
LOOK: look of block
*Right click on block to access Properties for
custom parameters

skype

communicate with skype
POSITION: position of block
VARLIST: list of variables to share with
skype
SIZE: size of block
LOOK: color/images of block
FORMAT: format string
SETPOINTS: coordinates of text within
block
*Right click on block to access Properties for
custom parameters

xmlrpc

communicate with xmlrpc
POSITION: position of block
VARLIST: list of variables to share with
xmlrpc
SIZE: size of block
LOOK: color/images of block
URI: uri of xml-rpc server
SETPOINTS: coordinates of text within
block
*Right click on block to access Properties for
custom parameters

ros

communicate with ros
POSITION: position of block
VARLIST: list of variables to share with ros
SIZE: size of block
LOOK: color/images of block
URI: uri of xml-rpc server
SETPOINTS: coordinates of text within
block
*Right click on block to access Properties for
custom parameters

fiducials

control with computer vision fiducials
POSITION: position of block
VARLIST: list of variables to share with
fiducial engine
SIZE: size of block
LOOK: color/images of block
SETPOINTS: coordinates of text within
block
*Right click on block to access Properties for
custom parameters

textbox display and change a variable's value with a

textbox
POSITION: position of textbox
VAR: variable to display and change
VALUE: new value for variable
SIZE: size of block
LOOK: color/images of block
SETPOINTS: coordinates of text within
block
CAPTION: caption for block
*Right click on block to access Properties for
custom parameters

meter

display a variable's value in a meter
POSITION: position of meter
VAR: variable to meter
MIN: minimum value of variable
MAX: maximum value of variable
SIZE: size of block
LOOK: color/images of block
SETPOINTS: rectangle coordinates of
meter within block
CAPTION: caption for block
*Right click on block to access Properties for
custom parameters

switch

display and change a variable's value as a
switch
POSITION: position of switch
VAR: variable to switch
SIZE: size of block
LOOK: color/images of block
CAPTION: caption for block
*Right click on block to access Properties for
custom parameters

joystick

use a joystick to control two variables
POSITION: position of joystick
VARX: x-variable for joystick
VARY: y-variable for joystick
MIN: minimum value or joystick variables
MAX: maximum value for joystick
variables
SIZE: size of block
LOOK: color/images of block
SETPOINTS: coordinates and size of stick
within block
CAPTION: caption for block
*Right click on block to access Properties for
custom parameters

save

save to file
POSITION: position of block
VARLIST: list of variables to save
SIZE: size of block
LOOK: color/images of block
SETPOINTS: coordinates of text within
block
FORMAT: format string
FILE: file to append data to
*Right click on block to access Properties for
custom parameters

gamepad use a joystick to control two variables
POSITION: position of gamepad
PORT: USB input device to monitor

STYLE: Type of attached gamepad:
logitech, xbox
VARX1: x-variable for left thumbstick
VARY1: y-variable for left thumbstick
VARX2: x-variable for right thumbstick
VARY2: y-variable for right thumbstick
VARBTN: variable for button states
VARPOV: variable for pov direction
MIN: minimum value for thumbstick axis
MAX: maximum value for thumbstick axis
SIZE: size of block
LOOK: color/images of block
SETPOINTS: coordinates and size of stick
within block
*Right click on block to access Properties for
custom parameters

functions

(NAME) ((ARGUMENTS)) locals:
(LOCALS)

define a user function
NAME: name of your function
ARGUMENTS: arguments passed by to this
function
LOCALS: local variables to this function

return (RETURN VALUE) return a value from a function
RETURN VALUE: value to return

pins

in

count edges on pin (PIN) for (DURATION)

count the number of rising edges on a pin
PIN: pin number to count edges on
DURATION: milliseconds during which edges
are counted

measure frequency on pin (PIN) for
(DURATION)

measure the frequency on a pin
PIN: pin number to measure frequency on
DURATION: milliseconds during which
frequency is measured

measure pulse on pin (PIN) at state (STATE)
measure the duration of a pulse a pin
PIN: pin number to measure pulse on
STATE: state of pin

pin (PIN) read the state of an IO pin
PIN: pin on which state is measured

duration of discharge on pin (PIN) measure the time until a pin's state changes
PIN: pin which is tested

shift data in from pin (PIN) mode (MODE)
shift data into a pin from another device
PIN: pin from which data is shifted in
MODE: mode

serial in from pin (PIN) mode:((BAUD),
(MODE),(BITS))

read data using the serial protocol
PIN: pin from which data is received
BAUD: rate at which data is received
MODE: mode: 0=inverted(normally low)
1=non-inverted(normally high)
BITS: number of bits to receive

read i2c on pin (PIN) and reply with
(ACKBIT)

read byte using i2c protocol and acknowledge
PIN: pin to transmit on
ACKBIT: acknowledge bit

read (BYTES) bytes from (ADDRESS) into
(DATA)

read data from an i2c eeprom
BYTES: bytes to write
ADDRESS: eeprom address
DATA: data array

out output frequency (FREQUENCY) on pin
(PIN)

continually output a frequency on a pin
FREQUENCY: frequency to output in Hz

PIN: pin for output

output frequency (FREQUENCY) on pin
(PIN) for (DURATION)

output a frequency on a pin for a duration
FREQUENCY: frequency to output in Hz
PIN: pin for output
DURATION: milliseconds for output

set pin (PIN) high set a pin high
PIN: pin to set high

set pin (PIN) low set a pin low
PIN: pin to set low

toggle pin (PIN)
change a pin's state from high to low/low to
high
PIN: pin to change

output pulse length (DURATION)uSec on pin
(PIN)

output a pulse
DURATION: microseconds to output pulse
PIN: pin to output

output pwm (DUTY) on pin (PIN)
output a pulse width modulated signal
DUTY: duty cycle, form 0 to 256
PIN: pin to output

output pwm (DUTY) on pin (PIN) for
(DURATION)

output a pulse width modulated signal
DUTY: duty cycle, form 0 to 256
PIN: pin to output
DURATION: milliseconds for output

shift out data (DATA) on pin (PIN) mode
(MODE)

shift data to a device
DATA: value to shift out
PIN: pin to output to
MODE: mode

send serial data (DATA) on pin (PIN) mode:
((BAUD),(MODE),(BITS))

send data with the serial protocol
DATA: value to transmit
PIN: pin to transmit on
BAUD: rate at which data is transmitted
MODE: mode: 0=inverted(normally low)
1=non-inverted(normally high)
BITS: bits to transmit

initialize i2c device on (PIN) initialize the i2c device
PIN: i2c scl pin

send start i2c token on (PIN) send a start i2c token
PIN: i2c scl pin

write i2c data (DATA) to pin (PIN)
write data with the i2c protocol
DATA: value to transmit
PIN: pin to transmit on

send stop i2c token on (PIN) send a stop i2c token
PIN: i2c scl pin

write (BYTES) bytes of (DATA) to
(ADDRESS)

write data to an i2c eeprom
BYTES: bytes to write
DATA: data array
ADDRESS: eeprom address

share array: (ARRAYS)

share arrays with 12Blocks to
upload/download data
ARRAYS: type a quoted, commas separated
list of array names

quickly sample the IO pins quickly sample the IO pins

Chapter 7: Troubleshooting
If you're having trouble with your TBot, please ensure the following:

• 12Block is installed on computer- for help see "Installation Guide"
• USB cable is connected to computer and TBot
• TBot is charged and switch is in middle position "Run without motors"
• Write or load a program in 12Blocks with the TBot library
• Quickly run a program by pressing "Run" in 12Blocks- keep cable connected
• Motors only run if switch is in "Run with motors" position
• Permanently load a program from "Device" menu- can then disconnect cable and restart by switching

"off" and "on"
• Turn TBot "off" after use, LED's should turn off.

Appendix A: Optional Parts
To complete the activities in this text, you will need a complete TBot robot.

For the latest information, downloads, and accessories, visit www.OneRobot.org

Aside from a PC with a serial or USB port and a few common household items, the TBot Robot Kit contain all the parts
and documentation you’ll need to complete the experiments in this text.

http://www.OneRobot.org/

