Integrating with ViewPort

Hanno Sander

http://mydancebot.com

August 2009

ViewPort Library

The ViewPort Library (vplib.dll) is used by the ViewPort Debugging Environment, the PropScope, and 12Blocks to connect and interact with programs running on the Parallax Propeller. Vplib can load spin programs to the Propeller, start and stop a connection using the high speed conduit, and manage the channels of data shared by the program running on the Propeller. This document details how to integrate with vplib.

Dynamic Data Exchange

Dynamic Data Exchange (DDE) is a proven technology for communication between multiple applications. It was released in 1987 but is still supported by many Windows applications- including Word, Excel, Matlab. Programming languages like Python and .Net include built-in or third-party support for DDE. DDE uses 5 simple commands to manage the connection, execute commands, and read/write data:

Connect(service,topic)

Execute(command)

Request(item)

Poke(item,value)

Disconnect()

In addition, DDE supports event processing with “advise loops”. Instead of continually using the “Request” command to read an item, you can set up and advise loop. Once set up, the advise loop will call you whenever the time changes. Here are the “advise” commands:

StartAdvise(item)

StopAdvise(item)

Using DDE

You typically start and stop each session by calling "connect" and "disconnect".

During a session use: "execute" to perform commands- like telling ViewPort to load a spin file. Use "request" to retrieve data from ViewPort- like the value of a Spin variable or array. Use "poke" to send data to ViewPort, for example- changing a Spin variable to a new number. Use "startAdvise" to start an advise loop, the "advise" event will fire with your requested data.

In some implementations you may specify a “format” for the "advise" and "request" commands. functions require a "format". Use 1 to get numbers, 11 to get numbers with units and 12 to get raw bytes.

ViewPort-specific commands and items

The ViewPort DDE server runs as service “vp” and topic “system”.

These commands are available for the “Execute” command:

connect

connects ViewPort to the Propeller

disconnect

disconnects

link(n,myserver|get!n)

starts an advise loop in ViewPort which links the

 variable n to the DDE item: myserver|get!n

unlink(n,myserver|get!n)
removes the specified link

unlink

clears all “links”

unadvise

clears all “advise loops”

load(file)

compile, load, and connect to the specified file

These items are available for the “Request” command:

list

lists all variables available to poke/request/advise

detail(n)

provides details on variable "n"

n

retrieves the value of a variable

n_m

retrieves the value of multiple variables

$spacer

retrieves the current joiner of multiple values

$update

retrieves the current update rate (in milliseconds)

These items are available for the “Poke” command:

n

set the value of a variable

$spacer

set the joiner of multiple values

$update

set the current update rate (in milliseconds)

These items are available for the “StartAdvise” and “StopAdvise” commands:

n

starts an advise loop to get the value of a variable

n_m

starts an advise loop for multiple variables

triggerstring

starts an advise loop for a trigger, see below

A trigger starts with "rise" or "fall" followed by the variable and the trigger value. Specify the result at the end. For example, “rise_n_5000_n_m" sets a trigger which fires when n rises above 5000. It will return the values of "n" and "m" when that happens.

Sample Usage

dde.init("vp","system")
connects to ViewPort DDE server

dde.execute("connect")
connects to Propeller

dde.execute("disconnect")
disconnects Propeller- releases com port

dde.request("list")

returns a list of variables whose values can be read/written

dde.request("detail(var)")
returns information about a variable, for example,

detail("io") returns "io|array[400]|base 16"

dde.poke("var",value):
sets a Propeller variable to a value, for example, poke(servo,1500) sets the servo variable to a value of 1500.

dde.execute("link(var,ddecommand)")

links a Propeller variable to a DDE variable, for example, link(servo,excel|sheet1.xls!r1c1) links the servo variable on the Propeller to the contents of the top, left cell of sheet1.xls in Excel. When you change that cell in Excel, the servo variable will change on your Propeller- potentially moving a servo.

dde.execute("unlink(var,ddecommand)"):

clears the specified dde link.

dde.execute("unlink")
clears all dde links.

dde.request(varlist)

returns a list of values for the list of variables you

specified. For example, temp_wind_time can

return "20 15 8:05"

dde.StartAdvise(varlist)
your dde client will be advised continually with a list of values for the list of variables you specified. For example, a varlist of temp_wind_time will result in events with a parameter of "20 15 8:05"

dde.StartAdvise(trigger)
sets a trigger. When the condition is valid, the trigger result is set to the values of the variables in the varlist. For example, StartAdvise("rise_temp_20_temp_time") will set up a new trigger that fires when the Propeller variable "temp" rises above 20. The application will get notified with a string of values- for example, "21 90 8:05".

dde.execute("unadvise"):
stops all advise loop.

dde.execute("load(file)"):
loads a fully specified spin file to the Propeller. Uses

ViewPort's library.

Variables that you can read/write/advise/trigger include the video and io arrays, as well as the configuration strings. I've included support for both synchronous read/write, as well as the "advise" event based callback feature for read/write.

Sample Code: “excel client.xls”

This shows both a simple and an advanced way of integrating with ViewPort. Typing “vp|get!n” into an excel cell will start an advise loop for the variable n. The included macros exercise all available DDE functions.

Sample Code: “python client.xls”

This shows a simple python script which can run on your PC if you download the python engine and Windows extensions- see the script for details. In a couple lines it starts a connection, loads a spin file, shows a value and then changes it.

Sample Code:”DotNetClient”

This shows how to use the “vpclient.dll” to fully integrate with ViewPort. The “vpclient.dll” takes care of the DLL communications for you. The methods available mirror the DDE commands. You can “reference” the dll from any .NET language.

Sample Code:”DotNetClient2”

This shows how to use the “vpclient.dll” to accomplish the simplest integrate with ViewPort. Once you set up the “reference”, here is the complete code:

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

 Dim vp As vpClient.Main = New vpClient.Main(Me)

 vp.connect()

 TextBox1.Text = vp.requestString("m")

 End Sub

End Class

Sample Code:”C# Client”

This shows how to use the “vpclient.dll” to accomplish the simplest integrate with ViewPort. Once you set up the “reference”, here is the complete code:

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

 Dim vp As vpClient.Main = New vpClient.Main(Me)

 vp.connect()

 TextBox1.Text = vp.requestString("m")

 End Sub

End Class
